Code 49

Specification for Barcode Symbology

1.0 Introduction

Conventional bar code symbols represent information in a single row of variable width bars and spaces. Most bar code applications are well served by one of these conventional symbologies.

Code 49 is a multi-row symbology. Multirow symbologies are useful in applications where a large amount of data needs to be encoded in a small area and where a conventional bar code symbol cannot be applied.

Code 49 is a multi-row, continuous, variable length symbology encoding the full ASCII 128 -character set. Each row is composed of 18 bars and 17 spaces. There are between 2 and 8 adjacent rows, each divided by a separator bar. Each row contains a row number, and the last row contains information indicating how many rows there are in the symbol. The main characteristics of Code 49 are presented in Table 1.

2.0 Symbol Description

2.1 Symbol Structure

Each Code 49 symbol consists of 2 to 8 rows. Each row consists of a leading quiet zone, a start pattern, 4 symbol characters encoding 8 code characters (the last code character is a row check character), a stop pattern, and a trailing quiet zone.

Rows are separated from each other by a 1-module high separator bar. The top and bottom of the symbol also nave separator bars which extend to the ends of the quiet zones. Figure 1 illustrates a Code 49 symbol encoding the data "MULTIPLE RCWS IN CODE 49".

2.1.1 Symbol and Code Characters

Each row contains tour symbol characters each with 16 modules forming 4 bars and 4 spaces. Each bar or space may be 1 to 6 modules wide. Each symbol character begins with a bar and ends with a space. Figure 2 illustrates a typical row, including the start and stop patterns.

Figure 1
Code 49 Symbol Encoding
"MULTIPLE ROWS IN CODE 49"

Encodable Character Set:....... All 128 ASCII Characters
3 Non-Data Function Characters
2 Shift Characters
1 Pad/Numeric Shift
Code Type. Multi-Row, Continuous

Row Self-Checking. Yes

Symbol Self-Checking... Yes
Symbol Width................................81X with Quiet Zones
Symbol Height.................................. Variable (2 to 8 rows)
Bidirectional Decoding .. Yes
Number of Required Symbol Check Characters.... 2 or 3
Smallest Nominal Element 0.0075 inch (0.191 mm)
Data Capacity \qquad 2 row symbol 9 alphanummeric, 15 numeric 8 row symbol 49 alphanumeric, 81 numeric

Table 1
Characteristics of Code 49

Figure 2
Code 49 Symbol Row

Each symbol character encodes two code characters from a set of 49 code characters. Each code character has a value between 0 to 48 . (See Section 2.2 for a description of how code characters represent data.)

The symbol character value (W) is equal to the value of the second code character $\left(\mathrm{C}_{2}\right)$ plus 49 times the value of the first code character $\left(\mathrm{C}_{1}\right)$. Each symbol character can have a value from 0 to 2400.
\qquad

Each symbol character can be encoded in either even or odd parity. Symbol character parity is based on the sum of the modules in the bars. If the sum of the bar modules is even, the symbol character has even parity; if odd, parity is odd. The symbol character values and corresponding bar and space module counts are given in Appendix F.

The individual rows are uniquely identified by the parity of the symbol characters within the row, as shown in Table 2.
\qquad

Symbol Character				
Row 1	W1	W2	W3	W4
Row 2	even	even	even	odd
Row 3	odd	odd	even	odd
Row 4	even	even	odd	odd
Row 5	odd	even	odd	even
Row 6	even	odd	odd	even
Row 7	odd	odd	odd	odd
Last Row	even	even	even	even

Table 2
Row Parity Patiern for Code 49 Symbols

Regardless of the number of rows in the symbol, the last row is always encoded with even parity symbol characters.

The code characters encoded in a Code 49 symbol can be described in matrix notation as shown in Table 3. For example, C_{11} and C_{12} are the first and second code characters in the first symbol character in Row 1. C_{13} and C_{14} are the first and second code characters in the second symbol character in Row 1.

In Table 3, r represents the last row in the symbol and has a value between 2 and 8 .

2.1.2 Row Check Characters

The last code character in every row is equal to the modulo 49 sum of the other 7 code characters in the row.

2.1.3 Row Count and Mode Character

$\mathrm{C}_{\mathrm{r} 7}$ defines the number of rows in the symbol and the starting mode of the symbol. $\mathrm{C}_{\mathrm{r} 7}$ is calculated as follows:

$$
\begin{aligned}
C_{r 7}= & 7(r-2)+M, \text { where } \\
& r \text { is the number of rows } \\
& M \text { is the starting mode }
\end{aligned}
$$

M has a value from 0 to 6 and is defined in Section 2.2.1.

2.1.4 Symbol Check Characters

The symbol characters can be shown in a matrix notation, as illustrated in Table 4.

Symbols with 6 or less rows have two overall symbol check characters, $\mathrm{W}_{\mathrm{r} 3}$ and $\mathrm{W}_{\mathrm{r} 2}$. Symbols with 7 or 8 rows have an additional symbol check character, $\mathrm{W}_{\mathrm{r} 1}$.

Check characters $\mathrm{W}_{\mathrm{r} 3}, \mathrm{~W}_{\mathrm{r} 2}$ and $\mathrm{W}_{\mathrm{r} 1}$ are weighted check sums, calculated as illustrated in Formula 2.

Formula 2

Symbol Check Character Calculation

In Formula 2, $X_{i j}, Y_{i j}$ and $Z_{i j}$ are weighting factors from Table 5.

2.1.5 Start and Stop Patterns

The start and stop pattern is used to identify the leading and trailing ends of the bar code symbol. Code 49 has unique start and stop patterns which identify the nominal beginning and end of the symbol row, allowing it to be bidirectionally scanned.

The start pattern consists of a bar 1 module wide followed by a space 1 module wide The stop pattern consists of a bar 4 modules wide.

Row i	Col ${ }^{\text {j }}$	$\mathrm{X}_{\mathrm{iij}}$	$Y_{i j}$	$Z_{i j}$
0	0	20	16	38
1	1	1	9	31
1	2	9	31	26
1	3	31	26	2
1	4	26	2	12
2	1	2	12	17
2	2	12	17	23
2	3	17	23	37
2	4	23	37	18
3	1	37	18	22
3	2	18	22	6
3	3	22	6	27
3	4	6	27	44
4	1	27	44	15
4	2	44	15	43
4	3	15	43	39
4	4	43	39	11
5	1	39	11	13
5	2	11	13	5
5	3	13	5	41
5	4	5	41	33
6	1	41	33	36
6	2	33	36	8
6	3	36	8	4
6	4	8	4	32
7	1	4	32	3
7	2	32	3	19
7	3	3	19	40
7	4	19	40	25
8	1	40	25	29
8	2	25	29	10
8	3	29	10	24
8	4	10	24	30

Table 5
Check Character Weighting Values

2.2 Data Encodation

Data can be encoded with three different methods. These methods are alphanumeric, numeric-only and full ASCI!.

2.2.1 Alphanumeric Encodation Method

 In alphanumeric encodation, every code character represents a single data character or special character. Table 6 defines this encodation.| Code
 Character Value | Code | | |
| :---: | :---: | :---: | :---: |
| | Code Ch | aracter | Code |
| | Character | Value | Character |
| 0 | 0 | 25 | P |
| 1 | 1 | 26 | Q |
| 2 | 2 | 27 | R |
| 3 | 3 | 28 | S |
| 4 | 4 | 29 | T |
| 5 | 5 | 30 | U |
| 6 | 6 | 31 | V |
| 7 | 7 | 32 | W |
| 8 | 8 | 33 | X |
| 9 | 9 | 34 | Y |
| 10 | A | 35 | Z |
| 11 | B | 36 | - |
| 12 | C | 37 | - |
| 13 | D | 38 | space |
| 14 | E | 39 | \$ |
| 15 | F | 40 | 1 |
| 16 | G | 41 | + |
| 17 | H | 42 | \% |
| 18 | 1 | 43 | S1 (Shift 1) |
| 19 | J | 44 | S2 (Shift 2) |
| 20 | K | 45 | FNC 1 (Function 1) |
| 21 | L | 46 | FNC 2 (Function 2) |
| 22 | M | 47 | FNC 3 (Function 3) |
| 23 | N | 48 | <NS> (numeric shift) |
| 24 | O | | |

Table 6
CODE 49 Code Character Set
NOTE: The complete encodation pattern of the 16 modules which comprise each symbol character is found in Appendix F.

Alphanumeric encodation includes six non-data characters: Shift 1, Shift 2, FNC 1, FNC 2, FNC 3 and <NS>.

Shift 1 and Shift 2 are used as the first character in a code character pair to define fullASCII characters as shown in Table 7.

Special meaning has been assigned to the use of FNC 1 or FNC 2 in a symbol:

FNC 1 - Alternate Symbol Type Identifier
FNC 2 - Field Separator
FNC 3 - Reserved

The use of the FNC 1 character as the first code character in the first symbol character is reserved for use by the Uniform Code Council and International Article Numbering Association. This use of FNC 1 will cause the reader to transmit a symbology identifier prefix of JT1 if the symbology prefix is enabled in the reader. (See section 2.4.2.) Readers should allow Code 49 with FNC 1 in the first position to be enabled separately from normal Code 49 symbols.

The FNC 2 character is used to separate two adjacent fields of data in a Code 49 symbol. This allows a single Code 49 symbol to contain several different variable length data fields. The reader should treat the data encoded before and after this character as if they came from separate symbols (i.e., each field should be stored or transmitted with its own prefix and suffix characters).

If the FNC 2 character is in the first data character position, it will cause the reader to transmit a symbology identifier prefix option of $]$ T4 (if the symbology identifier prefix is enabled in the reader). This can be used to designate another industry specific Code 49 symbol similar to FNC 1.

The numeric shift <NS> character has two functions. Whenever the numeric shift character is encountered within the code characters encoding data, it serves to toggle between Alphanumeric encodation and Numeric encodation. When one or more numeric shifts appear immediately preceding the symbol check characters, they are pad characters and do not represent data.

2.2.2 Numeric Encodation Method

Long sequences of numeric digits can be compressed through the use of the Numeric encodation method.

When using the Numeric encodation method, five digits are represented as three code characters, using the subset of code characters 0 through 47. If $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3} represent the three code characters, the encoded Numeric value is equal to $48^{2} \mathrm{C}_{1}+48 \mathrm{C}_{2}+\mathrm{C}_{3}$.

Whenever the number of digits to be encoded is a multiple of 5 plus 1 , the last digit is represented by a single code character from Table 6.

Whenever the number of digits to be encoded is a multiple of 5 plus 3 , the last 3 digits are represented by two code characters where the three digit number is equal to $48 \mathrm{C}_{1}+\mathrm{C}_{2}$.

Whenever the total number of digits to be encoded is a multiple of 5 plus 4 , the last 4 digits are represented by 3 characters, where where $48^{2} C_{1}+48 C_{2}+C_{3}=100,000$ plus the four digits to be represented.

Whenever the total number of digits to be encoded is a multiple of 5 plus 2 , the last 7 digits are considered to be 4 followed by 3 , and are represented by 3 and 2 characters as shown previously.

Examples:

In the following examples, the numeric data on the left are encoded by the code character values on the right.

1)	12345	$5,17,9$
2)	123456	$5,17,9,6$
3)	12345678	$5,17,9,14,6$
4)	123456789	$5,17,9,46,16,37$
5)	1234567	$43,45,2,11,39$

In example 1 above, the calculation is $5 \times 48^{2}+17 \times 48+9=12345$.

2.2.3 Full ASCII Encodation Method

ASCII characters beyond the basic alphanumeric data character set are encoded as a code character pair where the first character of the pair is either a Shift 1 or a Shift 2 character. Table 7 describes the encodation of the full ASCII character set.

2.3 Starting Modes

Starting mode values are listed in Table 8.

2.3.1 Regular Alphanumeric Mode

Mode 0 indicates that the symbol starts with alphanumeric encodation.

2.3.2 Concatenate Alphanumeric Mode

Mode 1 indicates that the symbol starts with alphanumeric encodation and that the data from the symbol is to be concatenated.

If a Code 49 symbol starts in Mode 1, the reader appends the information to a storage buffer (data not transmitted). The operation continues for all successive symbols starting in Mode 1, with

Starting Mode
Alphanumeric Mode
Concatenate Alphanumeric Mode
Numeric Mode
Group Alphanumeric Mode
Alphanumeric Mode, Shift 1
Alphanumeric Mode, Shift 2
Reserved

Table 8
Starting Mode Values for Code 49
messages being added to the end of previously stored messages. When a symbol is read which is not in Mode 1 or the concatenation event is separately concluded by a reader command, the contents are appended to the buffer, the entire buffer is transmitted, and the buffer is cleared.

2.3.3 Numeric Mode

Mode 2 indicates that the symbol starts with numeric encodation.

2.3.4 Group Alphanumeric Mode

Mode 3 indicates that the symbol starts in alphanumeric encodation and is to be concatenated using the group method.

Symbols which start in Mode 3 provide a more strongly controlled form of concatenation. It allows multiple symbols to be concatenated into a single message, retaining data in the correct order, regardless of scanning sequence.

Each symbol to be included in the Group concatenation is printed with Starting Mode 3. The first data character indicates how many symbols are in the group and that symbol's sequential number according to Table 9. The maximum number of symbols in a group is 9 .

For example, if the first code character of a Mode 3 symbol is 25 then the symbol is the fifth symbol in a group of seven.

The following example illustrates Group
Mode. Consider the text:
CODE 49 IS A MULTI-ROW, CONTINUOUS, VARIABLE LENGTH SYMBOLOGY ENCODING THE FULL ASCII 128-CHARACTER SET. EACH ROW CONTAINS 18 BARS.

2) Determine the check character for Row 1:
$C 18=139$ MOD $49=41$
3) The data character values for the second row are:

$$
\begin{array}{llll}
\text { space } & =38 & C_{21} \\
2 & =2 & C_{22} & \\
& W_{21}
\end{array}
$$

In this example, the data message fits exactly into a two row symbol. If a message does not fill all of the available character positions, it is "padded out" using trailing <NS> characters.
4) This is a regular, alphanumeric two-row symbol, therefore
$\mathrm{C}_{27}=7(2-2)+0=0$
5) Calculate the symbol character values:

$14 \times 49+33=719$	W_{11}
$10 \times 49+22=512$	W_{12}
$25 \times 49+21=1246$	W_{13}
$14 \times 49+41=727$	W_{14}
$38 \times 49+2=1864$	W_{21}

6) Calculate the symbol check characters:
```
W}\mp@subsup{W}{22}{}=[(16\times0)+(9\times719)+(31\times512)
(26\times1246)+(2\times727) + (12\times1864)]
MOD 2401 = (78,561) MOD 2401 = 1729
W W2 = [(20\times0) +(1\times719) +(9\times512) +(31\times1246)
+(26\times727)+(2\times1864)+(12\times1729)] MOD
2401 = (87,331) MOD 2401=895
```

7) Symbol check characters W_{22} and W_{23} are broken into their components:
$W_{\text {z2 }}=1729=49 \times 35+14$
$W_{23}=895=49 \times 18+13$
8) Calculate the check character for the second row:
$\mathrm{C}_{28}=(38+2+35+14+18+13+0)$ MOD $49=22$
9) Calculate the final symbol character:
$0 \times 49+22=22$
W_{24}
10) The matrix of code characters is:

14	33	10	22	25	21	14	41
38	2	35	14	18	13	0	22

11) The matrix of symbol characters is:

719	512	1246	727
1864	1729	895	22

12) The matrix of symbol character parities is:

odd even	even even	even
even	even	

13) Appendix F is then used to determine the actual bar and space patterns, which are printed in a complete Code 49 symbol as follows in Figure 3.

Figure 3
Code 49 Symbol
Encoding the Data "EXAMPLE 2"

2.4 Transmitted Data

2.4.1 Data Characters

All decoded characters are included in the data transmission. The Mode Character, Numeric Shift, Function, Shift Characters and Check Characters are not transmitted.

2.4.2 Symbology Identifier Prefix

A symbology identifier prefix may be transmitted by the reader to identify the symbology read and any options. For Code 49, the symbology identifiers are:

JTO	No special characters in first or second data character positions
JT1	FNC 1 in first data character position
JT2	FNC 1 in second data character
positio	

A complete set of symbology identifiers for all symbologies is available from AIM.

3.0 Dimensions and Tolerances

3.1 Measurement Conditions

Implicit in the measurement of code element width is the measurement which locates the boundary between the light and dark elements of the code. In order to allow for measurements to be made in the presence of edge roughness, spots and voids, the boundary is defined as the position of the center of a circular sample aperture no larger than 0.8 X when the apparent reflectance of the sample viewed through the aperture is exactly half way between the maximum and minimum reflectance values obtained by that aperture on the adjacent bar and space. X is the nominal width of a narrow element.

$3.2 X$ Dimension

Code 49 may be printed at various densities to accommodate a variety of printing and scanning processes. The significant dimensional parameter is X, the nominal width of a module. One module is the nominal width of the narrowest bars and spaces.

The minimum standard X dimension used is 0.0075 inches (0.191 mm). This limit reflects the current technology for a range of standard scanning devices. (See Appendix E for non-standard X dimensions.)

3.3 Minimum Bar Height

A minimum bar height of 8 X is recommended for ease of scanning with linear scanners.

3.4 Quiet Zones

The quiet zones are areas that are free and clear of all printing preceding the start pattern and following the stop pattern.

The minimum quiet zone is ten modules adjacent to the start pattern and one module adjacent to the stop pattern. Where space permits, a ten module quiet zone adjacent to the stop pattern is recommended.

3.5 Dimensional Tolerances

The various processes used to prepare bar code symbols have a limited capacity to produce the bars and spaces with widths which precisely match the ideal symbol. Bar code reading systems are designed to read imperfect symbols to the extent that practical algorithms permit. Appendix B describes the reference decode algorithm used in the derivation of the error tolerances given below.

Three sets of measurements are required to determine the tolerances for every symbol character. The bar measurement applies to the start and stop patterns.

Figure 4
Symbol Character Measurements

The symbol character to symbol character tolerance, t_{p}, is the maximum amount the total width of the character, p, can vary from its nominal dimension. See Figure 4.

The bar or space tolerance, t_{b}, is the maximum amount any of the bar widths and space widths may vary from its nominal dimension.

The edge to edge tolerance, t_{e}, is the maximum amount any of the six indicated dimensions (e) may vary from their nominal dimensions. These six dimensions are measured from the leading edge of a bar to the leading edge of the following bar, or the trailing edge of a bar to the trailing edge of the following bar.

The value of tolerances t_{b}, t_{e}, and t_{p} are defined as:

$$
\begin{aligned}
& t_{b}= \pm 0.40 X-0.0005 \text { inches }(0.013 \mathrm{~mm}) \\
& t_{e}= \pm 0.20 X \\
& t_{p}= \pm 0.20 X
\end{aligned}
$$

where:
X is the nominal minimum dimension.

Table 10 lists the calculated tolerances for various X dimensions.

These tolerances are represented graphically in Figure 5.

Figure 5
Code 49 Tolerance Values
Graph

3.6 Symbol Size

3.6.1 Symbol Width

The overall width of a symbol is equal to 81 X , including quiet zones. This is the sum of the $10 x$ minimum left quiet zone, the 70X bars and spaces and the 1 X minimum right quiet zone.

3.6.2 Symbol Height

The overall "height" of a symbol is a function of X, the bar height, and the number of rows, as follows:

$$
H=((h+g) r+g) X
$$

where:
$\mathrm{H}=$ height of the symbol
$\mathrm{h}=$ height of the individual bars (in multiples of X)
$r=$ number of rows (2 to 8)
$\mathrm{g}=$ height of separator bar (in multiples of X)

X	$t{ }_{b}$	t_{0}	t_{p}
7.5	2.5	1.5	1.5
8.0	2.7	1.6	1.6
9.0	3.1	1.8	1.8
10.0	3.5	2.0	2.0
12.0	4.3	2.4	2.4
14.0	5.1	2.8	2.8
17.0	6.3	3.4	3.4
20.0	7.5	4.0	4.0
30.0	11.5	6.0	6.0
40.0	15.5	8.0	8.0
50.0	19.5	10.0	$\bigcirc 0.0$
X is nominal module width t_{b} is bar or space tolerance t_{θ} is edge to edge tolerance t_{p} is symbol character to symbol character tolerance			

All measurements are in 0.001 inch

Table 10
Tolerance Values

4.0 Optical Specification

4.1 Introduction and Summary

The optical characteristics of the printed bar code symbols can vary substantially because of the varied processes which may be used to produce them. It is necessary that certain optical properties be maintained within acceptable limits if the reading process is to be reliable. In particular, this specification describes the reflectance characteristics of the bar and space elements within the symbol and the spectral band to be used by the reflectance measurement equipment.

The reflectance specifications have been designed so that a sufficiently discernible difference in reflectance exists between spaces and bars. The difference must be at least 37.5 percentage points for symbols with an X dimension of less than 0.040 inches (1.02 mm) and at least 20 percentage points for symbols with an X dimension of 0.040 inches (1.02 mm) or larger. Bar reflectance must always be less than 30 percent and space reflectance more than 25
percent.
Finally, this specification limits the amount of noise, that is, the reflectance variation, which can be tolerated within a bar or space and across the entire symbol. Noise can be caused by such printing defects as spots and voids, non-uniformity in the substrate material, or the show-through of patterns under a substrate which is not adequately opaque. Reflectance variation within the bars or spaces must be limited to be no greater than one-quarter the minimum reflectance difference between bars and spaces. In other words, the noise within one symbol element cannot exceed 25 percent of the minimum signal amplitude obtained between bars and spaces. Across an entire symbol, the reflectance of either the set of bars or the set of spaces can not vary any more than one-half the minimum reflectance difference between bars and spaces. The combined noise from all optical sources must not cause these limits to be exceeded.

A more detailed presentation of the optical specifications is given in the sections which follow. Measurements have been defined in a manner which in many respects parallels the operation of most bar code reading systems.

4.2 Measurement Conditions

4.21 Spectral Band

All AIM USS symbols must satisfy the minimum reflectance specification cited below for the spectral band centered at 633 nanometres in the visible spectrum. Measurements shall be made with a system having its peak response at 633 nanometres ± 5 percent and having a half-power band width no greater than 120 nanometres (in which there are no secondary peaks). Among possible source-filter-photodetector combinations which can be used are those employing a $\mathrm{He}-\mathrm{Ne}$ laser, appropriate red LED's or alternatively the CIE Source A illuminant (incandescent source) along with an S-4 response photodetector and a Wratten 26 red filter.

Appendix E includes a discussion of systems which are designed to operate in spectral bands other than the 633 nanometer band.

4.2.2 Diffuse Reflectance Measurements of Bars and Spaces

The diffuse reflectance of a surface is defined to be the ratio of the diffusely reflected radiation from the surface to that reflected from a specially prepared Magnesium Oxide or Barium Sulfate standard that is measured under the same illuminating and viewing conditions. Standard viewing conditions require the viewing and illuminating axes to be separated by 45 degrees with one of the axes positioned normal to the sample surface. In order to reject specular reflections, the aperture of the viewing and illuminating system should subtend an angle no greater than 15 degrees measured from the sample surface.

Either the light source or the receiver must restrict the sample field to an area equal to a circle of diameter 0.8 X , where X is the width of a narrow element of the bar code, or as specified in an application standard. The other optical path must have a field of view on the sample large enough to include a circle of diameter 8 X or more, centered on the 0.8 X diameter circle defined above. The two alternatives represent either flood illumination with sample area viewing defined as the receiver or illuminant sampling of the area as with a focused light source and wide area viewing.

4.3 Essential Bar Code Measurements

4.3.1 Measurement Conditions

The reflectance specifications given below are based upon signal-to-noise requirements for the reliable decoding of a symbol by a bar code reader. The signal is the reflectance difference between a bar and a space. Noise is any variation in reflectance caused by gradations in the ink or substrate material. Spots and voids in the symbol and the show-through of a pattern underlying a label with low opacity can also contribute to noise in bar and space reflectance values. It is essential, therefore, that a symbol be sampled adequately and that conditions under which an underlying dark surface or pattern may affect the symbol quality be included in the measurement process. The net effect of all noise contributing factors must not cause the symbol reflectance measurements to fall outside the stated specifications.

4.3.2 Reflectance Measurements

Figure 6 depicts the bar code reflectance measurement process and in graphical form shows the key measurement parameters required to describe the quality of the bar code symbol. Figure 6 a indicates the position of the sample aperture on a bar code image in which reflectance measurements are made. Note that all sample reflectance measurements are made with the sampling aperture confined within the area of a space or bar. No reflectance measurements are made with the aperture positioned across the edge of a bar and space as defined in Section 3.1 above. A plot of the reflectance measurements is shown in Figure 6b along with annotations describing the essential bar code reflectance parameters. On the left are indicated the maximum space reflectance R_{S} (MAX), the minimum space reflectance R_{S} (MIN), and the maximum bar reflectance R_{B} (MIN), obtained over all samples. On the right are indicated the ranges of reflectance ΔR_{E} obtained from a typical space and a typical bar element.

4.4 Reflectance Specifications

The reflectance characteristics of AIM USS symbols must comply with the following specification:

4.4.1 Minimum Bar Reflectance (R_{B})
 $R_{B}(M A X)<30$ percent

4.4.2 Minimum Space Reflectance (R_{S}) $\mathrm{R}_{\mathrm{S}}($ MIN $)>25$ percent

4.4.3 Minimum Bar-Space Reflectance Difference, MRD

The difference in reflectivity between the lightest bar and the darkest space is called MRD (Minimum Reflectance Difference). In other words,
$M R D=R_{S}(M I N)-R_{B}(M A X)$.
The minimum value of $M R D$ is:
MRD ≥ 37.5 percent for $X<0.040$ inches (1.02 mm)
MRD ≥ 20.0 percent for $X \geq 0.040$ inches (1.02 mm)
The special provisions for symbols with X ≥ 0.040 inches (1.02 mm) have been made in order to accommodate the printing of lower
density labels on darker backgrounds.

Figure 6
Bar Code Reflectance Measurements

4.4.4 Element Uniformity

4.4.4.1 Maximum variation in reflectance of a single element, ΔR_{E} (MAX)
The maximum permissible variation in the reflectance measurements made across one bar or space element cannot exceed one quarter of the MRD defined in 4.4.3;
$\Delta R_{E}($ MAX $)$ across one element ≤ 0.25 MRD

4.4.4.2 Maximum variation in reflectance of

 spaces across entire symbol, $\Delta \mathbf{R}_{\mathbf{S}}$ (MAX) The maximum permissible variation in the reflectance across all spaces is on-half of the minimum bar-space reflectance difference as defined in 4.4.3;$\Delta R_{S}(M A X)=R_{S}(M A X)-R_{S}(M I N) \leq 0.5 M R D$

4.4.4.3 Maximum variation in the reflectance of bars across entire symbol, $\Delta \mathbf{R}_{B}$ (MAX)

 The maximum permissible variation in the reflectance across all bars is one-half the actual measured value of the minimum bar-space reflectance difference as defined in 4.4.3 above;$\Delta R_{8}($ MAX $)=R_{8}($ MAX $)-R_{8}($ MIN $) \leq 0.5$ MRD

Appendix A Glossary of Terms

AIM - Automatic Identification Manufacturers, Inc. The publishers of this document.

Alignment - In an automatic identification system, the relative position and orientation of a scanner to the symbol.

Alphanumeric - The character set which contains letters, numbers and may contain other characters such as punctuation marks or control characters.

Abstract

ANSI - The American National Standards Institute-nee United States of America Standards Institute (USASI)--is a non-governmental organization responsible for the development of voluntary industry standards.

Aperture - The opening in an optical system (scanner) implemented by a physical baffle that establishes the field of view.

ASCII - The character set and code described in American National Standard Code for Information Interchange, ANSI X3.4-1977. Each ASCII character is encoded with 7 -bits (8 bits including parity check). The ASCll character set is used for information interchange between data processing systems, communication systems and associated equipment. The ASCll set consists of both control and printing characters.

Aspect Ratio - In a bar code symbol, the ratio of bar height to symbol length.

Autodiscrimination - The ability of bar code reading equipment to recognize and correctly decode more that one symbology.

Background - The spaces, quiet zones and area surrounding a printed symbol.

Bar - The darker element of a printed bar code symbol.

Bar Code - An automatic identification technology which encodes information into an array of varying width parallel rectangular bars and spaces.

Bar Code Character - See "Character, Symbol"
Bar Code Density - The number of data characters which can be represented in a linear unit of measure. Bar code density is often expressed in characters per
inch (CPI).
Bar Code Label - A label which carries a bar code symbol and is suitable to be affixed to an article.

Bar Code Reader - A device used to read a bar code symbol.

Bar Code Symbol - See "Symbol".
Bar Height - See "Bar Length".
Bar Length - The bar dimension perpendicular to the bar width. Also called height.

Bar Width - The thickness of a bar measured from the edge closest to the symbol start character to the trailing edge of the same bar.

Bar Width Reduction - Reduction of the nominal bar width dimension of film masters or printing plates to compensate for systematic errors in some printing processes.

Bidirectionar - A bar code symbol capable of being read successfully independent of scanning direction.

Bidirectional Read - See "Bidirectional".
Binary - The number system that uses only 1's and O's.

Bit - An abbreviation for "binary digit". A single element (0 or 1) in a binary number.

Centerline - The vertical axis around which character elements are located for letters, numerals, or symbols.

Character

1. Code Character - in Code 49, one of two data characters which make up a symbol character. In Code 128 and Code 16K, characters used to change Code Sets.
2. Data Character - a letter, digit or other symbol which is a member of the ASCII character set.
3. Human Readable Character - the letter(s), digit(s)
or other symbol associated with a specific symbol character(s) and printed along with the bar code symbol.
4. Symbol Character - a unique bar and/or space pattern which is defined for that symbology. There is not necessarily a one-to-one or unique correlation between syrnbol characters and data characters. Symbol characters may have a unique associated symbol value.

Character Self-Checking - the feature which allows a bar code reader to determine if a scanned group of
elements is a valid symbol character. If a symbology is described as being character self-checking, a single printing defect (edge error) in any symbol character does not produce another valid character.

Character Alignment - The vertical or horizontal position of characters with respect to a given set of reference lines.

Character Set - Those characters available for encodation in a particular automatic identification technology.

Check Character - A character included within a message whose value is used for the purpose of performing a mathematical check to ensure the accuracy of that message.

Check Digit - See "Check Character".
Clear Area - See "Quiet Zone".
Codabar - (2 of 7 Code, Code 27). A numbers only bar code consisting of seven modules, two of which are wide. See AIM USS-Codabar for specifications.

Code - See "Bar Code".
Code 39 - (3 of 9 Code). A full alphanumeric bar code consisting of nine modules, three of which are wide.
See AIM USS-39 for specifications.
Code 93 - A full alphanumeric bar code capable of encoding all 128 ASCll characters. See AIM USS-93 for specifications.

Code 128 - A full alphanumeric bar code capable of encoding all 128 ASCII characters. See AIM USS-128 for specifications.

Code 16K - A full alphanumeric, multi-row bar code capable of encoding all 128 ASCII characters. See AIM USS-16K for specifications.

Code 49 - A full alphanumeric, multi-row bar code capable of encoding all 128 ASCll characters. See AIM USS-49 for specifications.

Code Set - The specific assignment of data characters to symbol characters.

Code Reader - See "Bar Code Reader".
Continuous Code - A bar code symbology where all spaces within the symbol are parts of characters, e.g. USS-I $2 / 5$. There is no intercharacter gap in a continuous code.

CPI — Characters per inch (see "Bar Code Density").

Data Character -See "Character".

Decoder - As part of a bar code reading system, the electronic package which receives the signals from the scanner, performs the algorithm to interpret the signals into meaningful data and provides the interface to other devices.

Density - See "Bar Code Density".
Depth of Field - The distance between the maximum and minimum plane in which a code reader is capable of reading symbols.

Diffuse Reflection - The component of reflected light which emanates in all directions from the reflecting surface.

Discrete Code - A bar code symbology where the spaces between characters (intercharacter gap) are not part of the code, e.g. USS-39.

Dot Matrix - A system of printing where individual dots are printed in matrix ($5 \times 7,7 \times 9$, etc.) forming bars, alphanumeric characters and simple graphics. See AIM document T-11, "Matrix Impact Printing", for specifications.

Dot Size - The size of the printed dot laid down on a substrate in a matrix or line to form characters.

Element - In a bar code symbol, a single bar or space.

Element Width - the thickness of a bar or space measured from the edge closest to the symbol start character to the trailing edge of the same bar or space.

Film Master - A photographic film representation of a specific bar code or OCR symbol from which a printing plate is produced.

First Read Rate - See "Read Rate".
Font - A specific size and style of type.
Guard Bars - Bars which provide reference points for scanning but are not part of the symbol characters. For example, the bars which are at both ends and center of a UPC and EAN symbol.
$\mathrm{He}-\mathrm{Ne}$ - Common name for helium neon laser.
Horizontal Bar Code - A bar code or symbol presented in such a manner that its overall length dimension is parallel to the horizon. The bars are presented in an array which look like a picket fence.

Human Readable Character - See "Character."

Intercharacter Gap - The space between two adjacent bar code characters in a discrete code. For example, the space between characters in USS-39.

Interleaved Bar Code - A bar code in which characters are paired together using bars to represent the first character and spaces to represent the second, e.g. USS-1 $2 / 5$ (see also "Continuous Code").

Interleaved Two of Five Code - (12/5) - A number only bar code symbology consisting of five bars, two of which are wide. In this code both the bars and spaces carry information. See AIM X-5-1 USS I $2 / 5$ for specifications.

Ladder Code - See "Vertical Bar Code".
LED - Light emitting diode. A semiconductor that produces light at a wavelength determined by its chemical composition. A light source often used in bar code readers.

LOGMARS - Logistics of marking and reading symbols. A Department of Defense program to place a Code 39 symbol on all federal items. For specifications see Mil-Std 1189.

Misread - A condition which occurs when the data output of a reader does not agree with the data encoded in the bar code symbol.

Module - The narrowest nominal width unit of measure in a bar code.

Modulo Check Digit or Character — See "Check Character".

Moving Beam Scanner - A scanning device where scanning motion is achieved by mechanically moving the light beam through the bars.

Multi-Row Symbology - Symbologies where a long symbol is broken into sections and "stacked" one upon another similar to sentences in a paragraph. Extremely compact codes. Code 16 K and Code 49 are examples of multi-row symbologies.

Nanometre - A unit of measure (10^{-9} metre) used to define the wavelength of light. Many standards require scanning in the 633-900 nanometre range.

Nominal - The exact (or ideal) intended value for a specified parameter. Tolerances are specified as positive and negative deviations from this value.

Non-read - In a bar code system, the absence of data at the scanner output after an attempted scan due to no code, defective code, scanner failure or operator error.

Numeric - A character set that includes only numbers.
Opacity - The optical property of a substrate material that minimizes show-through from the back side or the next sheet. The ratio of the reflectance with a black backing to the reflectance with a white backing. Ink opacity is the property of an ink that prevents the substrate from showing through.

Orientation - The alignment of a bar code symbol with respect to horizontal. Two possible orientations are horizontal with vertical bars and spaces (picket fence) and vertical with horizontal bars and spaces (ladder).

Overhead - In a bar code system, the fixed number of characters required for start, stop and checking in a given symbol. For example, a symbol requiring a start/stop and two check characters contains four characters of overhead. Thus, to encode three characters, seven characters are required to be printed.

Picket Fence Code - See "Horizontal Bar Code".
Print Quality - The measure of compliance of a bar code symbol to the requirements of dimensional tolerance, edge roughness, spots, voids, reflectance, quiet zone, and encodation.

Quiet Zone - A clear space, containing no machine readable marks, which precedes the start character of a bar code symbol and follows the stop characters.
Sometimes called the "Clear Area".
Read Rate - The ratio of the number of successful reads on the first attempt to scan to the total number of attempts.

Reflectance - The ratio of the amount of light of a specified wavelength or series of wavelengths reflected from a test surface to the amount of light reflected from a barium oxide or magnesium oxide standard under similar illumination conditions.

Resolution - In a bar code system, the narrowest element dimension which can be distinguished by a particular reading device or printed with a particular device or method.

Scanner - An electronic device to read bar codes that electro-optically converts bars and spaces into electrical signals.

Self-checking - A bar code or symbol using a checking algorithm which can be independently applied to each character or symbol to guard against undetected errors.

Show-through - The generally undesirable property
of a substrate that permits underlying markings to be seen and may adversely affect read rate.

Skew - Rotation of a bar code symbol about an axis parallel to the symbol's length.

Space - The lighter element of a bar code usually formed by the background between bars.

Space Width - The thickness of a space measured from the edge closest to the symbol start character to the trailing edge of the same space.

Spectral Response - The variation in sensitivity of a reading device to light of different wavelengths.

Specular Reflection - The mirror-like reflection of light from a surface.

Spot - The undesirable presence of ink or dirt in a space.

Spot Size - The diameter of the beam of light used to scan a bar code symbol - ideally the beam width should be the same as the width of the narrow bar.

Stacked Codes - See "Multi-row Symbology"
Standard - A set of rules, specifications, instructions and directions to use a bar code or other automatic identification system to your profit. Usually issued by an organization, e.g. Logmars, HIBCC, UPC, etc.

Start-Stop Character or Pattern - A special bar code character that provides the scanner with start and stop reading instructions as well as scanning direction indicator. The start character is normally at the left-hand end of a horizontally oriented symbol. The stop character is normally at the right-hand end of a horizontally oriented symbol.

Substitution Error - A mis-encodation, mis-read, or human key entry error where a character that was to be entered is substituted with erroneous information.
Example: Correct information--1,2,3,4, substitution-1,2,3,5.

Substrate - The surface on which a bar code symbol is printed.

Symbol - A combination of bar code characters including start/stop characters, quiet zones, data characters, and check characters required by a particular symbology, which form a complete, scannable entity.

Symbol Character - See "Character".
Symbol Density - See "Bar Code Density".

Symbol Length - The distance between the outside edges of the quiet zones.

Symbology Identifier - An optional three character code which may prefix transmitted data from a bar code reader indicating the symbology read and any options enabled in the reader or special features of a symbology encountered (e.g., presence of FNC 1).

Tilt — Rotation of a bar code symbol about an axis perpendicular to the substrate.

USS - Uniform Symbology Specification. The current series of symbology specifications published by AIM which currently include USS-I $2 / 5$, USS-39, USS-93, USS-Codabar, USS-128, USS-49 and USS-16K.

Verifier - A device that makes measurements of the bars, spaces, quiet zones and optical characteristics of a symbol to determine if the symbol'meets the requirements of a specification or standard.

Vertical Bar Code - A code pattern presented in such orientation that the axis of the symbol from start to stop is perpendicular to the horizon. The individual bars are in an array appearing as rungs of a ladder.

Void - The undesirable absence of ink in a bar.
" X " Dimension - The nominal dimension of the narrow bars and spaces in a bar code symbol.

Appendix B

Reference Decode Algorithm for USS-49
A) For each row:

1) Confirm that the bar count is equal to 18.
2) Confirm the presence of leading and trailing quiet zones.
3) Confirm the presence of a valid start and stop pattern.
4) Code 49 is designed to be decoded using "edge to similar edge" measurements. Take 7 width measurements of every symbol character that is being decoded.

These measurements are called p, $\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3, \mathrm{t} 4, \mathrm{t}$, and t , as defined in Figure B-1.
5) Convert the six measurements t1...t6 into corresponding normalized values T1, T2...T6, in terms of integer multiples of a module width, as follows:

If $1.5 \mathrm{p} / 16 \leq \mathrm{ti}<2.5 \mathrm{p} / 16$, then Ti is declared as 2 modules
If $2.5 \mathrm{p} / 16 \leq \mathrm{ti}<3.5 \mathrm{p} / 16$, then Ti is declared as 3 modules
If $3.5 \mathrm{p} / 16 \leq \mathrm{ti}<4.5 \mathrm{p} / 16$, then Ti is declared as 4 modules
If $\quad 4.5 \mathrm{p} / 16 \leq \mathrm{ti}<5.5 \mathrm{p} / 16$, then Ti is declared as 5 modules
If $\quad 5.5 \mathrm{p} / 16 \leq \mathrm{ti}<6.5 \mathrm{p} / 16$, then Ti is declared as 6 modules
If $\quad 6.5 \mathrm{p} / 16 \leq \mathrm{ti}<7.5 \mathrm{p} / 16$, then Ti is declared as 7 modules
If $\quad 7.5 \mathrm{p} / 16 \leq \mathrm{ti}<8.5 \mathrm{p} / 16$, then Ti is declared as 8 modules
If $8.5 \mathrm{p} / 16 \leq \mathrm{ti}<9.5 \mathrm{p} / 16$, then Ti is declared as 9 modules,
If $9.5 \mathrm{p} / 16 \leq \mathrm{ti}<10.5 \mathrm{p} / 16$, then Ti is declared as 10 modules,
Otherwise the symbol character is in error.

Figure B-1
Tolerance Measurement Definitions
6) Use the six values $\mathrm{T} 1, \mathrm{~T} 2 \ldots \mathrm{~T} 6$ to determine a single Code 49 symbol character. (Note: a Code 49 Reference Diskette containing information to facilitate the creation of the appropriate look-up tables is available from AIM USA.)
7) Decode all four symbol characters using the approach outlined in steps (4) through (6), assuming a constant scanning direction.
8) Identify the row number by checking the symbol character parity patterns.
9) Convert the symbol character values into code character values.
10) Confirm that the row check character is correct.
B) Identify the last row which has four symbol characters with even parity, and examine the second to last character. Confirm that the expected number of rows is equal to the number actually observed.
C) Verify that the symbol check characters are correct.
D) Interpret the code characters as data characters according to the mode character and shift characters.
E) Perform such other checks as beam acceleration, absolute timing dimensions, etc., as are deemed prudent and appropriate considering the specific reading device and intended application environment.

Appendix C

Human Readable Interpretation
A human readable representation of the data characters in the symbol (equivalent to the transmitted characters) may accompany the symbol. It should not interfere with the symbol itself nor the quiet zones.

Appendix D

Autodiscrimination Compatibility
Some readers may be programmed to automatically discriminate among symbols encoded in other symbologies. Code 49 is compatible for use in an autodiscrimination environment with any of the following symbologies:

Code 39

Interleaved 2-of-5
Codabar
Code 93
Code 128
Code 16K
UPC
EAN
It is advisable to limit the reader's valid set of symbologies and symbol lengths to those needed by a given application in order to maximize reading security.

Appendix E

 Systems ConsiderationsIt is important that the various components (printers, labels, readers) making up a bar code installation operate together as a system. A failure in any component, or a mismatch between them, can compromise the performance of the overall system.

When both readers and printers are specified by a single user or by cooperative agreement (closed system), certain specified values such as X dimensions and spectral band can be allowed to deviate from standard tolerances. But the characteristics of the printer, symbol, and reader must be matched to achieve desired performance. Deviations should only be considered where standard specifications do not yield acceptable results, and where system component vendors and integrators take appropriate care to achieve required system matching.

X Dimension

In closed systems, the X dimension may be less than 0.0075 inches (0.1910 mm). The user must exercise care in these systems to assure a match between the reader resolution and printed symbol X dimension.

In these applications, where the X dimension is, less than 0.0075 inches (0.191 mm), the tolerance t_{b} is defined as:

$$
t_{b}= \pm 0.33 x
$$

Spectral Band

In closed systems, a reference spectral band other than 633 nanometres may be specified. In such systems, it is important to assure that the spectral response characteristics of the reading equipment is matched to the spectral reflectance characteristics of the printed symbols.

Other Considerations

Compliance with specifications is one key to assuring overall system success, but other considerations come into play which can influence performance as well. The following guidelines suggest some factors to keep in mind when specifying or implementing bar code systems: 1. Choose a symbology and print density which yield tolerance values which can be achieved by the printing technology to be used.
2. Choose a reader with resolution suitable for the symbol density and quality produced by the printing technology.
3. Be certain that the printed symbol's optical properties are within specification for the spectral band employed by the reader.
4. Be sure to verify symbol specification compliance in the final label or package configuration. Overlays, show-through, and curved or irregular surfaces can all affect symbol readability.
5. Bar height should generally be set at the highest value that is practical, given label, package, and printing technology constraints.
6. To the extent possible, reading equipment should be configured to accept only those symbologies and symbol lengths which are required by the system.

The effects of specular (mirror-like) reflections from shiny symbol surfaces must be considered. Standard reading systems are designed to detect variations in diffuse reflection between bars and spaces. At some reading angles, the specular component of the reflected light can greatly exceed the desired diffuse component, reducing read performances. Matte, non-glossy finishes minimize this effect. In cases where specular reflection effects are used to achieve the desired contrasts (as in some forms of printing or etching directly onto metal), extreme care must be exercise to assure that the optical properties are within specifications over the entire range of read angles and distances required by the particular application.

Appendix F - Code 49 Encodation Patterns

A reference diskette containing this table, and the programs necessary to generate it, is available from AIM USA.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Symbol Char. value} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Parity \quad C}} \& \multirow[t]{3}{*}{Symbol Char. value} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multirow[t]{3}{*}{Symbol Char. Value} \& \multicolumn{2}{|l|}{Parity} \& \multirow[t]{3}{*}{Symbol Char. Value} \& \multicolumn{2}{|l|}{Parity}

\hline \& \& \& \& \& \& \& Even Od \& \& \& Even \&

\hline \& $$
\begin{array}{ll}
\text { Even } & \text { Odd } \\
\text { BSBSBSBS } & \text { BSB }
\end{array}
$$ \& SSBSBSBS \& \& $$
\begin{aligned}
& \text { Even } \\
& \text { BSBSBSBS } \\
& \text { BSt }
\end{aligned}
$$ \& SSBSBSBS \& \& BSESBSBS ${ }^{\text {ES }}$ \& BSBSBSBS \& \& BSBSBSBS BS \& BSBS

\hline \& \& \& \& \& \& 394 \& 1121132513 \& 13116 \& 461 \& 15111412 \& 23411122

\hline 260 \& 131215 \& 21523111 \& 327 \& \& 13251112 \& 395 \& 31211323 \& 22216119 \& 462 \& 24211411 \& 12511123

\hline 261 \& 12341131
1323131

1 \& \& 329 \& 1224213114 \& 14142112 \& 396 \& 51211321 \& 11316112 \& 463 \& 133114123 \& 32511129

\hline 262 \& 13232131
13241221
13 \& 24214111
13314112 \& 329
330 \& 1225122123 \& 23242111 \& 397 \& 121141415 \& 14152111 \& 464 \& 224114112 \& 21611122
1521213

\hline 264 \& | 13241221 |
| :--- |
| 11432131 |
| 12 | \& 132414111 \& 331

331 \& 1313313112 \& 12342112 \& 398
399 \& 3211141313 \& 13243111
1413411 \& 465 \& 1521141412 \& 24311212

\hline 265 \& 12313111 \& 11514112 \& 332
333 \& 131422212 \& 24133111
13233112 \& 400 \& 2121414 \& 12334191 \& 467 \& 13411141 \& 13411213

\hline 266 \& 13222115 \& 152411 \& 333 \& 11333131122318 \& 223331 \& 401 \& 4121141213 \& 13225119 \& 468 \& 11611141 \& 33411211

\hline 268 \& \& $$
\begin{aligned}
& 16132111 \\
& 1433211
\end{aligned}
$$ \& 335 \& 11342221 \& 11433112 \& 03 \& 1221114411 \& 11425111

1416111 \& 469 \& 16111231 \& ${ }_{125121213}$

\hline 269 \& 12332221 \& 15223111 \& 336 \& 1222413114 \& 14124112 \& 403 \& | 32211442 |
| :--- |
| 2131143 |
| 1 | \& 12316111 \& 471 \& 12511231 \& 31611211

\hline 270 \& 23413111313 \& 13423111 \& 337 \& ${ }_{122323211} 12$ \& 12324112 \& 405 \& 413111414 \& 41111215 \& 472 \& 15211321 \& 31121125

\hline 271 \& 13214131 \& 16114 \& 338
339 \& 123423171 \& 21424111 \& 406 \& 131112346 \& 61111213 \& 473 \& 13411321 \& 51121123

\hline 272 \& 13223221 \& \& 339 \& 13115131 \& 24115111 \& 407 \& 33191232 \& 21211126 \& 474 \& 116113 \& 21112126

\hline 273 \& 11414131 \& 1251411 \& 341 \& 13124221
11315131 \& ${ }_{13215112}$ \& \& 22211233 \& 41211124 \& 475 \& 1611411 \& 4112124

\hline 274 \& 13232311 \& 2115 \& 341 \& 1133311 \& ${ }_{22315119}$ \& 409 \& 42211231 \& 6121112 \& 476 \& 14311419 \& 61112122

\hline 275 \& 11423221 \& 41151112 \& \& ${ }_{1}^{11324221}$ \& 11415112 \& 410 \& 11311234 \& 22111216 \& 477 \& 12511419 \& 21121216

\hline 276 \& 1432311 \& | 11142115 |
| :--- |
| 31142113 |
| 1815 | \& 343 \& 3311 \& 14251119 \& 411 \& 31311232 \& 42111214 \& 478 \& 2112114 \& 41121214

\hline 277 \& 14114221 \& 31142113 \& 344
345 \& 12215221 \& 15142111 \& 412 \& 23111323 \& 31211215 \& 49 \& 41121142 \& 61121212

\hline 278 \& 141233115 \& 21133114 \& \& 12224311 \& 13342111 \& 413 \& 43111321 \& 512112 \& 480 \& 111121 \& 112215

\hline 279 \& 12314221 \& ${ }_{41133112}$ \& 346
347 \& 1161132 \& 析 \& 414 \& 12211324 \& 22211125 \& 481 \& 31112143 \& 51112213

\hline 280 \& 123235311 \& 11124115 \& 348 \& 211521 \& 12433191 \& 415 \& 32211322 \& 42211123 \& 482 \& 51112141 \& 12121126

\hline 282 \& 11414311 \& 31124113 \& 349 \& 21161221 \& 15124111 \& 416 \& 21311323 \& 11311126
3131124 \& 484 \& 31121233 \& 52121122

\hline 283 \& 11151133 \& 5112 \& 350 \& 11143132 \& 133241 \& 418 \& 13111414 \& 51311122 \& 485 \& 51121231 \& 21221125

\hline 284 \& 31151131 \& 21115114 \& 351 \& 1152222 \& 14215111 \& \& 331 \& 23111215 \& 486 \& 21112234 \& 41221123

\hline 285 \& 21142132 \& 41115112 \& 352
353 \& 11161312 \& 142151911 \& 42 \& 22211413 \& 43111213 \& 487 \& 41112232 \& 61221121

\hline 286 \& 21151222 \& 22151113 \& 353 \& 21134131 \& 12415113 \& \& 42214 \& 12211216 \& 488 \& 21121324 \& 22112125

\hline 287 \& 11133133 \& 42151 \& 555 \& 21143221 \& 411611 \& 422 \& 11311414 \& 32211214 \& 489 \& 41121322 \& 42112123

\hline 288 \& 31133131 \& 112511 \& 355 \& 21152311 \& 1151114 \& \& 3131412 \& 52211212 \& 490 \& 11112325 \& 11212126

\hline 289 \& 11142223 \& 31251112 \& 356 \& 11125132 \& 11552114 \& 424 \& 13211143 \& 21311215 \& 491 \& 31112323 \& 22121215

\hline 290 \& 31142221 \& 12142114 \& 357 \& 11134222 \& 2114311 \& \& 332111 \& 41311213 \& 492 \& 51112321 \& 42121213

\hline 291 \& 11151313 \& 2142112 \& 358 \& 11143312 \& 211 \& 426 \& 22311142 \& 61311211 \& 493 \& 11121415 \& 11221

\hline 292 \& 31151311 \& 21242113 \& 359 \& 21116131 \& 41144114 \& \& 11411143 \& 23211124 \& 494 \& 31121413 \& 31221

\hline 293 \& 21124 \& 迷 \& 360 \& 21125221 \& 31134112 \& 428 \& 31411141 \& 43211122 \& 495 \& 51121411 \& 5122

\hline 294 \& 21133222 \& 2213311 \& 361 \& 21134311 \& 21125113 \& \& 14111233 \& 12311125 \& 496 \& 21112414 \& 12112

\hline 295 \& 21142312 \& 42133119 \& 362 \& 1216193 \& 21 \& 430 \& 34111231 \& 32311123 \& 497 \& 1112412 \& 32112

\hline 296 \& 11115133 \& 11233114 \& \& \& 1111611 \& \& 23211232 \& 52311121 \& 498 \& 22121143 \& 52112212

\hline 297 \& 31115131 \& 3123 \& 364 \& 12143131 \& 11761 \& 432 \& 12311233 \& 21411124 \& 499 \& 42121141 \& 21212215

\hline 298 \& 11124223 \& 12124114 \& 365 \& 12152221 \& 321611112 \& 23 \& 323 \& 41411122 \& 500 \& 11221144 \& 41212213

\hline 299 \& 31124221 \& 32124112 \& 366 \& 12161311 \& 2216111 \& \& 21411232 \& 24111214 \& 501 \& 31221142 \& 61212211

\hline 300 \& 11133313 \& 21224113 \& 367 \& 11234131 \& 12152113 \& 435 \& 241113 \& 13211215 \& 502 \& 12112144 \& 13121125

\hline 301 \& 31133311 \& 41224 \& 368 \& 11243221 \& 3215211 \& 436 \& 13211323 \& 33211213 \& 503 \& 32112142 \& 33121123

\hline 302 \& 21115222 \& 22151 \& 369 \& 11252311 \& 2125211 \& 437 \& 332113 \& 22311214 \& 504 \& 12121234 \& 22221124

\hline 3 \& 21124312 \& 42115 \& 370 \& 12125131 \& 221431 \& 437 \& 23211322 \& 42311212 \& 505 \& 32121232 \& 42221122

\hline 304 \& 12151132 \& 11215114 \& 371 \& 12134221 \& \& 39 \& 11411323 \& 11411215 \& 506 \& 21221233 \& 11321125

\hline 305 \& 21251131 \& 3121 \& 372 \& 12143311 \& 3124311 \& 440 \& 31411321 \& 31411213 \& 507 \& 41221231 \& 313211

\hline 306 \& 22142131 \& 23151112 \& 373 \& 11216131 \& 32134191 \& 41 \& \& 51411211 \& 508 \& 22112233 \& 51321121

\hline 307 \& 11242132 \& 12251113 \& 374
375 \& 112225221 \& 32134111 \& 42 \& 34111411 \& 24211123 \& 509 \& 42112231 \& 23112

\hline 308 \& 22151221 \& 32251111 \& 375 \& 11234311 \& \& \& 23211412 \& 213311124 \& 510 \& 11212234 \& 43112122

\hline 309 \& 11251222 \& 13142113 \& 376 \& 11111236 \& 22125112 \& \& 12311413 \& 333311122 \& 511 \& 22121323 \& 12212125

\hline 310 \& 12133132 \& 33142111 \& 377 \& 31111234 \& \& \& 32311411 \& 122411123 \& 512 \& 42121321 \& 23121214

\hline 311 \& 12142222 \& 22242112 \& 378 \& 51111232 \& (1232 $3: 225111$ \& \& 21411412 \& 242411121 \& 513 \& 11221324 \& 43121212

\hline 312 \& 12151312 \& 11342193 \& 3 379 \& 21111325 \& 12116113 \& \& 14211142 \& 1151124 \& \& 31221322 \& 12221215

\hline 313 \& 21251311 \& 31342111 \& $1{ }^{380}$ \& 41111323 \& 321611 \& \& 14211142
2331141 \& 31511122 \& 515 \& 12112324 \& 32221213

\hline 314 \& 22124131 \& 23133112 \& 2381 \& 61111321 \& 21216112 \& \& 1241142 \& 25411213 \& 16 \& 32112322 \& 52221211

\hline 315 \& 11224132 \& 12233 \& 382 \& 11111416 \& 6 23161111 \& \& 21511141 \& 114211214 \& 517 \& 12121414 \& 421321214

\hline 316 \& 22133221 \& 32233 \& 383 \& 31111414 \& \& $1{ }^{1} 451$ \& \& 3231212 \& 518 \& 32121412 \& 241321212

\hline 317 \& 11233222 \& 21333112 \& 2384 \& 51111412 \& \& $1{ }^{1} 5$ \& 24211231 \& 23311213 \& 519 \& 21221413 \& 13111

\hline 318 \& 822142311 \& 13124113 \& 385 \& 31211143 \& 12243112 \& \& \& 43311211 \& 520 \& 41221411 \& 33112213

\hline 319 \& 911242312 \& 233124111 \& 1 | 1386 |
| :--- |
| 387 | \& 5121114 \& (\& 11^{454} \& 22411231 \& 1231 1241214 \& 521 \& 2212413 \& 132221

\hline 320 \& - 12115132 \& 22224112 \& [| 287 |
| :--- |
| 388 | \& 12111235 \& (1353112 \& $12 \quad 455$ \& 11511232 \& 32411212 \& 522 \& 42112411 \& 42212212

\hline 321 \& 12124222 \& 211324113 \& 1388 \& 52111233 \& (1233 22334111 \& 456 \& 25111321 \& 21511213 \& 523 \& 11212414 \& 141312215

\hline 322 \& 12133312 \& 231324111 \& 17389 \& 52111231 \& (1334112 \& 12 457 \& 14211322 \& 41511211 \& 524 \& 31212412 \& 1231312213

\hline \& 21233311 \& 23115112 \& 12390 \& 21211234 \& \& 112 458 \& 23311321 \& 25211122 \& 525 \& 23121142 \& 14251312211

\hline 32 \& 22115221 \& 12215113 \& 13391 \& 41211232 \& 132423251112 \& 12459 \& 12411322 \& 1432 1431123 \& 526 \& 12221143 \& 14314121124

\hline 325 \& 11215222 \& 32215111 \& 11392 \& 221113 \& 1322 21325111 \& 11 \& 21511321 \& 34311121 \& 527 \& 3222114 \& 41

\hline
\end{tabular}

Symbol Char. Value	Parity Sy		Symbol Char. value			Symbol Char. value	Parity		Symbol Char. value	Parity		
			ven Odd			Od	Even	Odd				
	$\begin{array}{lll} \text { Even } & \text { Odk } \\ \text { BSBSBSBS } & \text { BSI } \end{array}$	$\begin{aligned} & \text { ddd } \\ & \hline \text { SBSBSBS } \end{aligned}$		$\begin{aligned} & \text { Even } \\ & \text { BSBSBSBS } \\ & \text { BSI } \end{aligned}$	BSBSBSBS			BSBSBSBS BS	BSBSBSBS		BSBSBSBS BS	BSBSBSBS
							930	1122124313	13251211	997	31131151	31211134
7961	1112432213	3123123	863	31311331	11133124	931	31221241	14133121	998	2112215251	51211132	
7971	1113341233	33123121 13132213	864	31311331 2311422 31	31133122	932	12112243	14142211	999	2113124212	2111226	
7981	11251141	13132213	866	1221142311	11142214	933	32112241	12333121	1000	1113153	32111224	
799	12142141	33132211	866	32214421	31142212	934	121213331	12342211	1001	311131515	52111222	
800	1215123111	11323123	8868	213114222	21124123	935	32121331	13224121	1002	111222432	21211225 41211223	
801	11233141	113232212	888	131115134	41124121	936	212213321	13233211	1003	31122241 11131333	61211221	
802	11242231	11332213 31332211	889	331115112	21133213	937	221123321	11424121	1004	111313336	22111315	
803	1125132131	31332211 23114122	871	222115124	41133211	938	112123331	11433211	1005	31131331	22111315	
804	12124141	23114122	872	113115131	11115124	939	221214221	14115121	1006	211132424	42111313 11211316	
805	12133231	12214123	873	313115113	31115122	940	112214231	14124211	1007	21122332	11211316	
806	12142321	23123212 1222313	874	23211151	11124214	941	31221421	12315121	1008	21131422	31211314	
807	12151411	12223213	874	123111523	31124212	942	121	12324211	1009	11113333	51211312	
808	112151413	32223211	876	21411151	21115213	943	321124	13215211	1010	31113331	12211135	
809	112242312	21323212	876	24111241	41115211	944	12121513	11415211	1011	11122423	32211133	
810	11233321	13114213	8778	13211242	12151123	945	32121511	11161123	1012	31122421	52211131	
811	11242411	33114211	878	13211242	12151123	946	21221512	31161121	1013	1.1131513	21311134	
812	12115231	22214212	879	22311241	21251122	947	22112512	21152122	1014	31131511	41311132	
813	12124321	11314213	880	11411242	22142122	948	1121251	21161212	1015	21113422	13111225	
814	12133411	31314211	881	14111332	11242123	949	31212511	11143123	1016	21122512	33111223	
815	11152141	14141122	882	12311332	22151212	950	13121152	31143121	1017	12131152	22211224	
816	11161231	23241121	883	12311332	11251213	951	22221151	11152213	1018	21231151	42211222	
817	1113414	12341122	884	21411331	31251211	952	11321152	31152211	1019	22122151	11311225	
818	11143231	24132121	885	24111421	12133123	953	23112151	21134122	1020	11222152	31311223	
819	11152321	13232122	886	3211422	32133121	954	12212152	21143212	1021	22131241	51311221	
820	11161411	24141211	887	22311421	12142213	955	23121241	11125123	1022	11231242	23111314	
821	11116141	13241212	88	11411422	32142211	956	12221242	31125121	1023	12113152	43111312	
822	11125231	11432122	889	14119512	21242212	957	21321241	11934213	1024	12122242	12211315	
823	11134321	22341211	890	23211511	22124122	958	131	31134211	1025	12131332	32211313	
824	11143411	14123122	891	1231151511	11224123	959	13121332	21116122	1026	21231331	52211311	
825	21111244	14132212	892	21411511	12133212	960	11312242	21125212	1027	22113241	21311314	
826	41111242	12323122	893	13311151	22133212	61	22221331	12161122	1028	11213242	41311312	
827	11111335	23232211	894	11511151	11233213	962	113213	22152121	1029	2212233	13211134	
828	31111333	12332212		124	12115123	963	231123	11252122	1030	11222332	33211132	
829	51111331	21432211	896	1241124		964	12212332	22161211	1031	22131421	22311133	
830	21111424	24114121	897	15111331	12124213	965	23121421	12143122	1032	11231422	42311131	
831	41111422	13214122	898	13311331	12124213	966	12221422	2152212	1033	12113332	11411134	
832	11111515	24123211	899	1151133	1224212	967	21321421	21252211	1034	12122422	31411132	
833	31119513	13223212	900	14211421	22115212	968	13112422	22134121	1035	12131512	14111224	
834	51119511	11414122	901	12411421	112152	888	13121512	11234122	1036	21231511	34111222	
835	21211153	22323211	902	15111511	11215213	970	11312422	22143211	1037	22113421	23211223	
836	41211151	11423212	903	13311511	3121521	971	22221511	11243212	1038	11213422	43211221	
837	22111243	14114212	904	11511511	13151122	972	1132151	12125122	1039	22122511	12311224	
838	42111241	23214211	905	31121152	22251121	973	23112511	12134212	1040	11222512	32311222	
839	11211244	12314212	906	21112153	23142121	973	122125	2123	1041	13131151	121411223	
840	31211242	21414211	907	4111215		- 974	21312511	1	1042	11331151	14111221	
841	12111334	15141121	908	21	$1 \begin{array}{ll}33151211 \\ 12251212\end{array}$	寿	14121151	111216122	1043	12222151	124111313	
842	32111332	13341121	909	41121248	$4 \begin{array}{ll}12251212 \\ 13133122\end{array}$	976	12321151	122125211	1044	12231241	113211314	
343	21211333	14232121	910	11112244	[13133122	978	13212151	11225212	1045	13113151	133211312	
844	41211331	14241211	$1 \begin{aligned} & 911 \\ & 912\end{aligned}$	31112242 11121334	2 413142212	-979	13221241	113161121	1046	13122241	122311313	
845	22111423	12432121	$1 \begin{aligned} & 912 \\ & 913\end{aligned}$	11121334		$1{ }^{1} 980$	11412151	12252121	1047	11313151	142311311	
846	42111421	15123121	$1 \begin{aligned} & 913 \\ & 914\end{aligned}$	31121332 21112333	(1932 22242211	- 981	11421241	13143121	1048	13131331	11411314	
847	11211424	15132211	1914 915	21112333	(1)	$1{ }^{2} 982$	14112241	13152211	1049	11322241	131411312	
848	31211422	13323121	1915	41112331	(123122	-983	14121331	11343121	1050	11331331	14211133	
849	12111514	13332211	1916	21121423 41121421	(1) 23133211	$1{ }^{1} 9884$	12312241	12234121	1051	12213241	34211131	
850	32111512	11523121	1917	41121421 11112424	123133211		12321331	12243211	1052	12222331	23311132	
851	21291513	14214121	$1 \begin{array}{ll}1918 \\ 1\end{array}$	11112424 31112422	(124 12233212	11 1868	13212331	13125121	1053	12231421	12411133	
852	41211511	1 14223211	11 1 189	11121544	4 13115122	2987	13221421	13134211	1054	13113331	32411131	
853	22211152	2 12414121	$1 \begin{array}{ll}920 \\ 1\end{array}$	31121512	12124212	2988	11412331	11325121	1055	13122421	21511132	
854	11311153	12423219	$1 \begin{aligned} & 921 \\ & 1922\end{aligned}$	21112513	1311315122	-989	11421421	11334211	1056	-11313331	15111223	
855	31311159	151514219	1922	41112511	11 22224211	11990	14112421	12216121	1057	713131511	24211222	
856	23111242	213314219	1923	4111212153	153 11324212	1291	14121511	121225219	1058	811322421	13311223	
857	12211243	311514211	119224	32121151	151 23115211	11992	212312421	31111225	1059	11331511	113331122	
858	32211241	111151124	1124 925	6 212121151	1	12993	$3 \quad 12321511$	1151111223	1060	12213421	21241122	
859	21311242	231151122	123926	7 22112152	15221315211	11	13212511	1121111316	1061	12222511	111151122	
860	13111333	21142123	1231227	8711212153	15314151121	995	11412511	1141111314	1062	11141152	523151122	
861	33111331	41142121	121928	8 22121242	4213242121	21 996	611131153	5361191312	1063	31132151	5125111	
862	22211332	21151213	- 929									

Symbol Char. Value	Parity Sy		symbol Char. Value	Parity Sy		Symbol Char. Value	Parity		Symbol Char. value	Parity			
						d	Even Od	odd					
	$\begin{array}{ll} \text { Even } & \text { Odk } \\ \text { BSBSBSBS } & \text { BSI } \end{array}$	3SBSBSBS		BSBSBSBS BS	SBSBSBS		BSBSBSBS BS	BSBSBSBS		BSBSBSBS BS	BSBSBSBS		
									1312125124	24221221	1265	3252111142	42113131
10642	21141241	42113131		$\begin{array}{lll}12211162 \\ 21311161 & 12\end{array}$		$\begin{aligned} & 1198 \\ & 1199 \end{aligned}$	1131216113	13321222	1266	1521211311	11213134		
10651	1112315234	342113191			322211321	1200	11321251	11512132	1267	2431211222	22122223		
1066	1113224223	23311312	1133	13111252		1201	32121915	22421221	1268	13412113	42122221		
1067	1114133212	124193131	1134	22211251	41321131	1202	521211131	11521222	1269	33412111	11222224		
1068	2111415132	32411311	1135		13112134	1203	2122111625	25112221	1270	225121122	22131313		
1069	21123241	21511312	1136	1221134233	33112132	1204	412211141	14212222	1271	11612113	42131314		
1070	21132331	15211132	1137	21311349	13121224	1205	612211122	25121311	1272	31612111	11231314		
1071	21141421	24311131	1138	43233	33121222	1206	221121161	14221312	1273	31131115	31231312		
1072	14242	13411132	1139	13211432	11312134	1207	42112114	12412222	1274	511311131	12113224		
1073	3332	22511131	1140	22211431	22221223	208	312121152	23321311	1275	21122116	32113222		
1074	11132422	11611132	1141	1131432		1209	51212113	12421312	1276	41122114	12122314		
1075	114151216	16111222	1142	2311952		1210	131211162	21521311	1277	61122112	32122312		
1076	21114331	25211221	1143	12211522		121	33121114	1511.2312	1278	31113115	21222313		
1077	21123421	14311222		1311612		1212	22221115	24212311	1279	51113113	41222311		
1078	21132519	23411221		222116114	4311222	1213	42221113	13312312	1280	12131116	22113313		
1079	12141151	12511222		6121	12212224	1214	11321116	22412311	1281	32131114	42113311		
1080	11232151	21611221			23121313	1215	31321114	11512312	1282	52131112	11213314		
1081	11241241	15211312	1149		43121311	1216	51321112	15221131	1283	21231115	12		
1082	12123151	24311319	1149	1161	12221314	1217	23112115	13421131	1284	41231113	23131132		
1083	12132241	13411312	150	1251	32221312	1218	43112113	16112131	1285	61231119	12231133		
1084	12141331	22511311	151	1251	21321313	1219	12212116	16121221	1286	22122115	32231131		
1085	11214151	11611312	1152	32	21321313	1220	32212114	14312131	1287	42122113	21331132		
1086	11223241	21121135	1153	11411341	4132	1221	52212112	14321221	1288	11222116	13122133		
1087	11232331	41121133	1154	14111431	13112314	1222	213121	12512131	1289	31222114	33122131		
1088	11241421	61121131	1155	12311431	33112312	1223	41312113	12521221	1290	51222112	13131223		
1089	12114241	11112136	1156	13211521	22212313	1224	61312111	15212221	1291	12113116	33131221		
1090	12123331	31112134	1157	11411521	42212311	1225	1412111	15221319	1292	32113114	11322133		
1091	12132421	51112132	1158	14111619	11312314	1226	34121113	13412221	1293	52113112	22231222		
1092	12141511	11121226	1159	17611	24	寿	23221114	13421311	1294	21213115	11331223		
1093	11214331	31121224	116		13221133	1228	43221112	11612221	1295	41213113	31331221		
1094	11223421	51	1161				115	16112311	1296	61213111	23113132		
1095	11232511	21112225	1162	31112161	32321132	1230	32321113	14312311	1297	13131115	12213133		
1096	11151151	41112223	1163	121253	22321132	1231	52321111	12512311	1298	33131113	23122222		
1097	11133151	61112221	164	1112252	31421131	1232	21421114	21131134	1299	22231114	12222223		
1098	11142241	21121315	165	211122	14112133	233	41421112	41131132	1300	42231112	23131312		
1099	11151331	41121313	1166	21121342	11213	234	24112114	11122135	1301	11331115	12231313		
1100	11195151	61121311	1167	11112343	34112131	1235	13212115	31122133	1302	31331113	32231311		
1101	11124241	11112316	1168	31112341	14121223	-	33212113	51122131	1303	51331111	21331312		
1102	11133331	31112314		11121433	3412312133	1237	22312114	11131225	1304	23122114	13113223		
1103	11142421	51112312		31121431	23221222	1238	12	31131223	1305	43122112	33113221		
1104	11151519	22121134	1171	124322	12321223	1239	11412115	51131221	1306	12222115	13122313		
1105	11191254	42121132	1172	21121522	32321221	1240	31412113	321113134	1307	32222113	33122319		
1106	31111252	11221135	1173 1174	1252	32321221	1241	51412119	141113132	1308	52222111	111313223		
1107	21111343	31221133	174	11	21421222	1242	15121114	421122224	1309	21322114	22222312		
1108	41111341	51221131	1175	1112161	1321222	243	24221113	341122222	1310	41322112	211322313		
1109	11111434	12112135	1176	3112161	24121312	244	13321114	421131314	1311	13113115	51322311		
1110	31111432	32112133	1177	22121161	24121312	1245	33321112	41131312	1312	33113113	323113312		
1111	21111523	52112131	1178	11221162	13221313	1246	22421113	311113225	1313	22213114	12213313		
1112	41111521	12121225	1179	12112162	33221311	1247	22421	31113223	1314	42213112	232213311		
1113	11111614	3212122	- 1180	- 12121252		248	11521114	1451113221	1315	11313115	521313312		
1114	31111612	52121221	- 1181	21221251	22321312	1249	31521112	1211122315	1316	31313113	324131131		
1115	31211161	21221224	+ 1182	22112251	11421313	1250	25112113	313122313	1317	51313111	113231132		
1116	12111253	41221222	1183	+ 11212252	31421311 14112313	1251	14212114	1451122311	1318	14131114	422331131		
1117	32111251	122112224	+ 118	11221342	14112311	1252	34212112	1221113314	1319	34131112	211431132		
1118	21211252	242112222	1185	$\begin{array}{r}11221342 \\ \hline 12112342\end{array}$	34112311 23212312	1253	23312113	1341113312	1320	23231113	13122132		
1119	22111342	11212225	1186 1187	+ 12112342	12312313	31254	43312111	1122131133	1321	43231111	14131222		
1120	11211343	3 22121314	[1188	7 $\begin{aligned} & 12121432 \\ & 21221431\end{aligned}$	132312311	1255	12412114	1442131131	1322	12331114	12322132		
1121	31211341	142121312	(1288 1188	(22112431	121412312	21256	32412112	1211231134	1323	32331112	1223231221		
1122	-12111433	311221315	(1189	- 11212432	25121131	1257	21512113	$13 \quad 31231132$	1324	21431113	1312331222		
1123	32111431	131 31221313	3	11212432	14221132	1258	841512111	1112122134	1325	41431111	11121431221		
1124	- 21211432	521221311	1	22121521	23321131	1259	- 16121113	1332122132	1326	64122113	1324113131		
1125	22111522	2212112315	5 1192	211221522	12421132	1260	- 25221112	1212131224	1327	713222114	$14 \quad 13213132$		
1126	611211523	332112313	31193	$\begin{array}{ll} & 12112522 \\ & 12121612\end{array}$	122122121131	1261	14321113	1332131222	1328	8 33222112	1224122221		
1127	731219521	52112311	11194 1195	$4{ }^{4} 12121612$	1611	1321262	234321111	11121231223	1329	22322113	1313222222		
1128	812119613	21212314	$4{ }^{4} 1195$	7 21221611	151515121222	1222	323421112	11241231221	1330	O 42322111	1124131311		
1129	9 32111611	41212312	21196	6 12221161	(1361 15121222	1263	42521113	11322113133	1331	111422114	1411413132		
1130	- 21211612	23121133	1197	713112161	13312132		-						

Symbol Char. value	Parity Sy		Symbol Char. Value	Parity S		Symbol Char. value	Parity		Symbol Char. value	Parity			
			Even Od			Odd	en Od						
	Even Od BSBSBSBS BS	BSBSBSBS		$\begin{aligned} & \text { Even } \\ & \text { BSBSBSBS BS } \end{aligned}$	SBSBSBS		BSBSBSBS BS	BSBSBSBS		BSBSBSBS BS	BSBSBSBS		
									14214112123	12332311	1533	3131511112	12233311
1332	3142211213	13231312	1399	2122311422		$\begin{aligned} & 1466 \\ & 1467 \end{aligned}$	2331411113	13214221	1534	4151112131	13115221		
1333	14113114	11422222	1400 1401		22132222	1468	1241411213	13223311	1535	23251111	13124311		
1334	3411311222	22331311	1401		112	1469	21514111	11414221	1536	24142111	11315221		
1335	2321311311	11431312	1402	42114112	22141312	1470	16141111	1.1423311	1537	13242112	11324311		
1336	43213111	14113222	1403	11214115	11241313	47	14341111	14114311	1538	22342111	21161131		
1337	1231311414	14122312	1404	31214113 51214111	31241319	47	1523211112	12314311	1539	14133112	11152132		
1338	23131121	12313222	1405	51214111 1314114 1	12114133	1473	134321112	21151132	1540	23233111	11161222		
1339	21413113	23222311	1406	13141114 33141112	32114131	1474	16123111	11142133	1541	333112	21143131		
1340	41413111	12322312	1407	22411131	12123223	1475	143231193	31142131	1542	21433111	21		
1341	15131113	21422311	1408	22411119	32123221	1476	12523111	11151223	1543	24124111	61311		
1342	24231112	24113311	1409		12132313	1477	15214111	31151221	1544	13224112	11134132		
1343	133319131	13213312	10		321323	1478	134141112	21133132	1545	22324111	11143222		
1344	33331119	22313311	411	113		1479	116141112	21142222	1546	11424112	11152312		
1345	22431112	11413312	1412	23132113	21	1480	11151115	21151312	1547	. 14115112	21125131		
1346	5122112	14231131	1413	43132111	22114214223	1481	3115111	11124133	1548	23215111	21134221		
1347	14222113	12431131	1414	12232114	22123312	48	5115111	31124131	1549	12315112	21143311		
1348	34222119	15122131	1415	32232112	22123312	48	21142114	11133223	1550	27415111	11116132		
1349	23322112	15131221	1416	21332113	31223311	1484	41142112	31133221	1551	15151919	11125222		
1350	12422113	13322131		413123114	12114313	1485	11133115	11142313	1552	14242111	11134312		
1351	32422111	13331221	418	13123114	32114311	1486	31133113	31142311	1553	15133111	12152131		
1352	21522112	11522131		22223113	21214312	1487	51133111	21115132	1554	13333111	12161221		
1353	15113113	1421313	1420	23113	23141131	1488	21124114	21124222	1555	14224111	11243131		
1354	24213112	14222221	1421	11323114	1224113	1489	41124112	21133312	1556	12424111	11252221		
1355	13313113	12413131	1422	423114	21341131	1490	11115115	11195223	1557	15195111	12134131		
1356	33313111	14231311	1423	31323112	13132132	1491	311	31115221	1558	13315111	12143221		
1357	22413112	12422221	424	23114113	13132132	1492	511151	1124313	1559	11515111	12152319		
1358	11513113	12431311	425	43114111	13141222	493	1215111	31124311	1560	11161114	11225131		
1359	31513111	15113221	1426	12214114	22241221	494	32151112	22151131	1561	3116111	11234221		
1360	16131112	15122311	1427	32214112	222	1495	21251113	11251132	1562	2115211	11243311		
1361	25231111	13313221	1428		23123131	1496	1251911	12142132	1563	41152111	12116131		
1362	14331112	133	1439		12223132	1497	22142113	12151222	1564	11143114	12125221		
1363	23431111	11513221	1430	退1411	23132221	498	2142111	21251221	1565	31143112	12134319		
1364	15222112	11522311	1433	41111	12232222	499	11242114	22133131	1566	21134113	21111235		
1365	24322111	14213311	1432	341113	1223141311	1500	3124	11233132	1567	41134111	41111233		
1366	13422112	12413311	1433	1113	12241312	1501	1213311	22142221	1568	11125114	61111231		
1367	22522111	21141133	1434		12241312	1502	3213311	1242222	1569	31125112	11111326		
1368	16113112	41141131	35	24132	3114132	1503	21233113	22151319	1570	2111611	31111324		
1369	25213111	11132134	1436	13232113	13114132	1504	4123311	11251312	1571	41116111	51111322		
1370	14313112	31132132	1437	33232111	1312314132	1505	2212	12124132	1572	12161113	21111415		
1371	23413111	11141224	1438	22332112	11314132	1506	111	12133222	1573	32161111	41111413		
1372	12513112	31141222	1439		131323222	1507	11224114	12142312	1574	22152112	61111411		
1373	21613111	21123133	1440	321	113232311	1508	31224112	21242311	1575	11252113	21211144		
1374	11141116	41123131	1441 1442	14123113	1133231	1509	12115114	22115131	1576	31252111	141211142		
1375	31141114	21132223	442	23223112	1133231	1510	32115112	11215132	1577	12143113	322111234		
1376	51141112	41132221	1443	23223112	1221422	1511	21215113	22124221	1578	32143119	142111232		
1377	21132115	21141313	1444	12323113	12214222 23123311	1512	41215111	11224222	1579	21243112	211211235		
1378	41932113	41141319	1445	32323111	12233312	1513	13151113	22133311	1580	22134112	231211233		
1379	61132111	111114134	1446	21423112 24114112	(122 12223312	1513	3315111	11233312	1581	11234113	351211231		
1380	11123116	31114132	1447	24114112	$12{ }^{131933311}$	1515	22251112	12115222	1582	31234111	12111325		
1381	31123114	1411123224	1448	13214113	1313114312	1515	2314211	12124312	1583	12125113	332111323		
1382	51123112	231123222	1449	33214191	1122214311	1516	23142112	12124312	1584	32125111	152111321		
1383	21114115	1511132314	4 1450	22314112	1211314312	1517	12242113	212243	1585		1211324		
1384	41114113	331132312	14	11414113	13	1588	3224	13142131	1586	22116112	41211322		
1385	61114111	121114223	1452	31414111	14132131	-	131331	13151221	1587	11216113	322111414		
1386	12141115	41114221	1453	151	1214141221	1521		111342131	1588	31216111	42111412		
1387	32141113	321123313	1454	24241111	112332131	11521 1522 1	22233112	212233131	1589	13161112	11211415		
1388	52141111	141123311	1455	13341112	1212341221	$1 \begin{aligned} & 1522 \\ & 1523\end{aligned}$	11333113	312242221	1590	23152111	31211413		
1389	21241114	4411114314	1456	25132111	$1{ }_{1} 13223131$	1 1524	31333111	12251311	1591	12252112	1251219411		
1390	41241112	231114312	21457	14232112	213232221	15152	23124112	213124131	1592	13143112	1222211143		
1391	22132114	422141132	21458	23332111	1111423131	$1 \begin{aligned} & 1525 \\ & 1526\end{aligned}$	12224113	313133221	1593	22243111	42211141		
1392	42132112	211241933	31459	12432112	$1{ }^{1} 13241311$	1527	32224111	11324131	94	11343112	1211311144		
1393	11232115	1531241131	1460	15123112	1211432221	11527	32224111 21324112	213142311	595	23134111	1131311142		
1394	31232113	1312132133	1461	24223111	119114131	1529	- 13115113	131333221		12234112	1223111233		
1395	51232111	1132132131	1462	13323112	1214123221	1529	- 33115111	11342311	㖪	21334111	43111231		
1396	- 12123115	12141223	31463	22423111	12314131	1531	32215112	12215131	1598	125112	1212211234		
1397	7 32123113	1332141221	$1{ }^{1} 1464$	4 11523112	12	15	11315113	12224221	1599	- 22225111	1132211232		
39	52123111	1121241222	21465	251141	123232		-113113	122422					

Symbol Char. Value	Parity Sy		ymbol Char. value	Parity Sy		Symbol Char. Value	Parity		symbol Char. Value	Parity		
			Parity			d						
		SBSBSBS		BSBSBSBS BSB	SBSBSBS		BSBSBSBS BSB	SBSBSBS				
									312	1801	212	24
16001	11325112213	21311233		1667	3151121251	51			221413	1802	2113112531	22
16012	2311611141	413112311668	1668	15211123		1736	2412112332	32221411	1803	4113112321	21113233	
16021	1221611213	13111324	1669		21121234	1737	1322112421	21321412	1804	6113112141	41113231	
16032	21316111	33111322	1670	121	41121232	1738	33221122	13112413	1805	11122126	321	
1604	14161111	222113231	1671	1122	12235	1739	2232112333	33112411	18	2124	211231413	
1605	11	422	16	1161112331	31112233	1740	4232112122	22212412	1807	1131216	41131411	
1606	4143111	11311324		3161112151	51112231	1741	1142112411	11312413	1809	31131214	11113324	
1607	12343111	31311322	1675	1611121311	11121325	1742	31421122313	31312411 14121142	810	51131212	31113322	
1608	13234111	23111413		2521121231	31121323	1743	14112124	14121142	811	211131251	11122414	
1609	11434111	43111411		1431121351	51121321	1744	34112122	23221141	12	411131233	31122412	
1610	14125111	12211414		3431121121	21112324	1745	14121214	12321142	1813	121	21113413	
1611	12325111	32211412		234112124	41112322	1746	34121212	2142	1814	15	113411	
1612	13216111	21311413	680	125112132	21121414	174	12312124	24	1814	41122213	12131143	
1613	11416111	41311411	1681	25112114	41121412	1748	23221213	13212142	1815	4112213	32131141	
1614	31111216	23211142	1681	11212	11112415	1749	43221211		1816	6112221		
1615	51119214	12319143	682	1126	31112413	1750	12321214	1232	1817	11113216	42	
1616	31211125	32311141	1683	41121124	51112411	1751	323212121	11412142	1818	31113214 51113212	11222143	
1617	51211123	21411142	1685	61121122	12121144	1752	21421213	2232123	1819	22131124	22131232	
1618	21		686	31112125	32121142	1753	41421211	11421232 14112232	1821	42131122	11231233	
1619	21211216	33211231	1687	511121232	21221143	1754	132122	14121322	1822	11231125	31231231	
1621	41211214	22311232	1688	31121215	41221141	1755	33212212	12312232	1823	31231123	12113143	
1622	61211212	11411233	1689	51121213	12	1757	22312213	23221321	1824	51231121	32113141	
1623	12211126	31411231	690			858	42312211	12321322	1825	12122125	12122233	
1624	32211124	14191323	691			1759	11412214	21421321	1826	32122123	32122231	
1625	52211122	34111321	1692	125	42121231	1760	31412212	24112321	1827	52122121	121313	
1626	21311125	23211322	1693		11221234	1761	25121122	13212322	1828	12131215	32	
1627	41311123	12311323	1694	11221126	31221232	772	14221123	24121411	1829	32131213	21231322	
1628	61311121	32311321	695	11221126	12112234	1763	3422112	13221412	1830	52131211	22113232	
1629	13111216	21411322	696	124	32112232	1764	23321122	11412322	1831	21231214	11213233	
1630	33111214	24111412	1697	12126	12121324	1765	12421123	22321411	1832	41231212	22122322	
1631	22211215	13211413	1698	12112126	32121322	1766	32421121	11421412	1833	22113124	11222323	
1632	42211213	33211411	16	32112124	2122132	767	21521122	14112412	1834	42113122	22131412	
1633	11311216	22311412	1700	52112122	41221321	1768	15112123	23212411	1835	11213125	11231413	
1634	31311214	11411413	1701	12121216		1769	15121213	12312412	1836	22122214	31231411	
1635	51311212	31411411	702	32	12321	1770	13312123	21412411	1837	42122212	12113323	
1636	13211125	24211141			2324	1771	24221212	15121141	1838	11222215	32113321	
1637	33211123	13311142			22121413	1772	12	13321141	1839	31222213	12122413	
1638	22311124	22411141	1705	退21213	42121411	1773	33321219	11521941	1840	51222211	32122411	
1639	42311122	119511142	1706 1707	1221	11221414	1774	11512123	14212141	1841	12113215	21222412	
1640	11411125	25111231	$\begin{array}{r}1707 \\ \hline 1708\end{array}$	2211221	1122	1775	22421212	14221231	1842	32113213	32113412	
1641	31411123	14211232	1708	42112213	121124	776	1521213	12412141	1843	52113211	111213413	
1642	51411121	123311231	1709	11212216	121124	1777	31521211	12421231	1844	21213214	431213411	
1643	14111215	512411232	1710	31212214	2 32112412	1778	2511221	15112231	1845	41213212	213131142	
1644	34111213	321511231	1711	51212212	$2 \begin{aligned} & 21212413 \\ & 41212411\end{aligned}$	1779	14212213	15121321	1846	23131123	32231141	
1645	23211214	415111322	-1712		213121143	-1780	34212211	113312231	1847	43131121	11331142	
1646	43211212	224211321	1713		143	$1{ }^{1} 1781$	23312212	13321321	1848	12231124	23122141	
1647	12311215	513311322	- 1714		22221142	2 1782	12412213	311512231	1849	32231122	12222142	
1648	32311213	322411321	1715		22221142	1783	32412211	111521321	1850	21331123	23131231	
1649	52311211	111511322	1719	52221121	11321143	1788	- 21512212	214212321	1851	41331121	12231232	
1650	21411214	425111419	1717	413	12142	1785	-15221122	214221411	1852	13122124	21331231	
1651	41411212	1214211412	1718 1719	41321122 13112125	125 12212143	31786	-24321121	12412321	1853	33122122	12213113142	
1652	14211124	124 23311411	$\begin{array}{ll}1719 \\ & 1720\end{array}$	- 33112123	23121232	21787	713421122	12421411	1854	13131214	4 13122232	
1653	34211122	(122 12411412	1720 1721	133112123 13121215	(12321233	31788	- 22521121	15112411	1855	33131212	1211313142	
1654	23311123	21511411	$1 \begin{array}{ll}1721 \\ 1722\end{array}$	13121215 33121213	13132221231	1789	- 16112122	13312411	185	11322124	12413131322	
1655	43311121	1218311141	1772	233121213	(125 21321232	17321790	- 16121212	121512411	1857	22231213	1311322232	
1656	- 12411124	12412511141	1	11312	13112233	1791	14312122	1221131144	1858	42231211	1122231321	
1657	732411122	12215211231	171724	45	12231	311792	25221211	31131142	1859	11331214	1411331322	
1658	821511123	1231341231	$1{ }^{1725}$	5 4222	121323	123 1793	314321212	1221122143	1860	- 31331212	1223113231	
1659	41511121	121	$1 \quad 1726$	6 11321215	151513121323	1794	412512122	41122141	1861	23113123	2312213232	
1660	- 15111214	1416111321	$1 \quad 1727$	31321213 51321211	111	331795	- 23421211	2112131233	1862	23113121	231231232	
1661	1 24211213	1314311321	171728	51321211 23112214	$14 \begin{array}{ll}14 & 22221322\end{array}$	321796	12521212	1241131231	1863	312213124	2412222322	
1662	\% 13311214	$14 \quad 12511321$	171729		1211321323	231797	15212212	1211113144	1864	23122213	$13 \quad 23131411$	
1663	33311212	1215211419	1730	1730 43212215	153132132	$21 \quad 1798$	24312211	1131113142	1865	43642221	1112231412	
1664	22411213	1313411411	11731	31 32212215	$13 \quad 2311232$	22 1799	13412212	1211122234	1866	1222221	142133141	
1665	42411211	11611411	171732	32212213	$11^{12212323}$	231800	22512211	1131122232	1867	73222221	12131133	
1666	1214	3143112114	1733	52212211	12212323							

Symbol Char. Vatue	Parity		Symbol Char. Value	Parity		Symbol Char. Value	Parity		Symbol Char. value	Parity		
			Even Parity				Odd	n		Odd		
	Even BSBSBSBS	BSBSBSBS		BSBSBSBS	BSBSBSBS		BSBSBSBS	BSBSBSBS		BSBSBSBS	BSBSBSBS	
					14331211	22132321	2002	11341213	11233411	2069	31151212	32
1868	21322213	11313322		12	112	2003	31341211	11161141	2070	21133123	14111422	
1869	41322211	11313322	1937	15213121	22141411	2004	23123122	11143141	2071	41133121	23211421	
1871	33113212	11322412	1938	15222211	11241412	2005	12223123	11152231	2072	21142213	12311422	
1872	22213213	23113411	939	13413121	12114232	2006	23132212	11161321	2073	41142211		
1873	42213211	12213412	1940	13422211	12123322	2007	12232	11134231	2075	31124122	13211512	
1874	11313214	21313411	1941	1161312	12	2008	21	11143321	2076	1133214	22311511	
1875	1313212	14131141	1942	16113219	21232411	2009	131	1152411	2077	133	11411512	
1876	24131122	12331141	1943	14313211	22114321	2010	1314123	111245	2078	21115123	14211151	
1877	13231123	222141	1944					111243			12411151	
1878	33231121	3231231	1945			2013		111241			1511	
1879	22331122	1422141	1946				11314123	21111334	2081	41124211	13311241	
1880	11431123	11431231	1947	31132123	1134141	2014	22223212	41111332	2082	11115214	11511241	
1881	31431121	14113141	1948	31132123	11223214	2016	11323213	11111425	2083	31195212	14211331	
1882	14122123	14122231	1949	51132121	31	2017	13232	31111423	2084	22151122	12411331	
1883	34122121	12313141	1950	11141215	41	2018	23114212	51111421	2085	11251123	15111421	
1884	14131213	14131321	1951	31141213	123141			21111514	2086	31251121	13311421	
1885	34131211	12322231	1952	51141211	1313223141	2020		41111512	2087	12142123	11511421	
1886	12322123	12331321	1953	21123124	11323141	2020	42	31211152	88	32142121	14211519	
1887	23231212	13213231	1954	41123122	13141321	2021	24141121			1313	12411511	
1888	12331213	13222321	1955	21132214	11332231	2022	24141121			32151211	3	
1889	32331211	1141323	956	41132212	11341321	2023	13241122	242				
1890	21431212	13231411	1957	191	1221414			41211241				
189	24113122	11422321	1958	31114123	1223231	025		42111333				
189	13213123	11431411	1959	51114121	1232321	2026		42111331	2094	22142212	11121244	
1893	24122212	14113321	1960	11123215	12241411	2028	12332122	11211334	2095	11242213	42	
189	13222213	14122411	1961	123213	13114231	2028	,	31211332	2096	31242211	21112243	
189	33222	12313321	1962	51123211	1123	29	24123121	12111424	2097	12124123	41112241	
1896	11413123	12322411	1963	211142	11314231	03	3223122	32111422	2098	32124121	21121333	
1897	22322212	13213411	1964	41114212	13132411	2032	24132211	21211423	2099	12133213	41121331	
1898	11422213	11413411	1965	22141123	11323321	232	13232212	41211421	100	32133211	11112334	
1899	31422211	11141143	1966	42141129	11332411	033	11423122	22111513	1	21233212	32	
1900	14113213	31141141	1967	11241124	12214321	2034		42111511		22115122		
1901	34113211	21132142	1968	31241122	12223411	2035	22332211		103	11215123	222	
190	$2 E 213212$	21141232	1969	12132124	151142	2036	11432212	11211514	2104	22124212	23	
1903	12313213	1123143	1970	32	2114214	2038	14114122	12211153	2105	11224213	41112421	
1904	32313219	31123141	971	121	21151231	39	12314122	32211151	2106	31224211	21121513	
1905	21413212	11132233	1972	32141212	11133142	2040	23223211	311152	2107	12115213	41121511	
1906	25131121	31132231	1973	21241213	111	2041	12323212	13111243	2108	32115211	1112514	
1907	14231122	11141323	1974	41241211	1115132	2041	2142321	33111241	909	2121521	1112512	
1908	23331121	31141321	19	22123123	2112414	2042		124		23151121		
1909	12431122	21114142	1976	42123121	2113323	43	13214212	11311243			2121152	
1910	15122122	21123232	1977	11223124	21142321	20	13214212	11311243				
1911	$15: 31212$	21132322	1978	22132213	21151411	2045	22314211	31311241	2112	13142122	3	
1912	13322122	21141412	197	42132211	11115142	2046	11414212	23111332	13	13151212	12112153	
1913	24231211	11114233	1980	11232214	11124232	2047	14241121	12211333		1342122	2112151	
1914	13331212	31114231	1981	31232212	11133322	2048	15132121				243	
1915	11522122	11123323	1982	121	11142412	2049	1514	21311332		23133121	41	
1916	22431211	31123321	1983	32114122	21	2050	13332121	13111423			2	
1917	25113121	11132413	1984	12123214	21124321	2051	13	33111421	2118	23142211	22112242	
1918	14213122	31132411	1985	32123212	21133411	2052	14223121	22211422		12242212	11212243	
1919	25122211	21114322	1986	21223213	12151141	2053	14232211	11311423	2120	21342211	22	
1920	14222212	21123412	198	41223211	11242141	2054	12423121	31311421	2121	13124122	11221333	
1921	12413122	12141142	1988	22114213	11251231	2055	12432211	23111512	2122	13133212	31221331	
1922	23322211	21241141	198	42114211	12133141	2056	15114121	12211513	2123	11324122	12112333	
1923	12422212	22132141	19	11214214	12142231	2057	15123211	32211511	2124	22233211	32112331	
1924	21522211	11232142	1991	31214212	12151321	2058	13314121	21311512	2125	11333212	12121423	
1925	15113212	22141231	1992	23141122	11224141	2059	1332321	13211152	2126	23115121	32121421	
1926	24213211	11241232	1993	12241123	11233231	2060	1151412	22311151	21	1221512	21221422	
1927	13313212	12123142	1994	32241121	11242321	2061	11	11411152	128	23124211	22112422	
1928	22413211	12132232	1995	21341122	11251411	2062	14214	14111242	129	12224212	11212423	
1929	11513212	12141322	1996	13132123	312115141	2063	12414211	23211241	130	21324211	22121512	
1930	15231121	21241321	1997	33132121	12124231	2064	21151123	12311242	2131	13115212	11221513	
1931	13431121	22114141	1998	13141213	312133321	2065	41151121	121411241 141531	2132	22215211	31221511	
1932	16122121	11214142	1999	33141211	12142411	2066	11142124	24111331	2133	11315212	12112513	
1933	16131211	22123231	2000	11332123	311215231	2067	31142122	13211332	2134	13251121	32112511	
1934	143	11223232	2001	22241212	211224321	206	11	22311331	2135	14142121	21212512	

Symbol Char. value			Symbol Char. Value	Parity		Symbol Char. Value	Parity		Symbol Char. Value	Parity		
			Parity		Even		Odd	Even				
	BSBSBSBS	BSBSBSBS										
2136	14151211	23121151		2203	51111313	22131151	2270	21511222	11241331	233	13121134	11411251
2137	12342121	12221152	2204	21211135	11231152	2271	15111313	12114151	2338	33121132	14111341	
38	13233121	21321151	2205	41211133	12122152	2272	24211312	12123241	2339	22221133	12311341	
2139	13242211	13112152	2206	61211131	12131242	2273	13311313	12132331	2340		13211431	
2140	11433121	13121242	2207	22111225	21231241	2274	3331131	12141421	2342	31321132	14111521	
2141	14124121	11312152	2208	42111223	22113151	2275	22411312	11214241	2342	31321132	14111521	
2142	14133211	22221241	2209	11211226	11213152	2276	11511313	11223331	2343	23112133	12311521	
2143	12324121	11321242	2210	31211224	22122241	2277	1311		2344	43112131	13211611	
144	12333211	23112241	2211	51211222	11222242	2278	25211131				11411611	
2145	13215121	12212242	2212	12111316	22131331	2279	14311132					
2146	13224211	23121331	2243	32111314	11231332	2280	23411131					
2147	11415121	12221332	2214	52111312	12113242	2281	12511132	12132511				
2148	11424211	21321331	2215	21211315	12122332	2282	21611131	11142151	3349			
2149	14115211	13112332	2216	41211313	12131422	2283	15211222	1	2350	21321223	31112251	
2150	12315211	13121422	2217	61211311	21231421	2284	24311221	11124151	2351	41321221	11121343	
2151	21161122	11312332	2218	22211134	22113331	2285	13411222	11133241	2352	13112224	31121341	
2152	11152123	22221421	2219	42211132	11213332	2286	22511221	11142331	2353	33112222	21112342	
2153	31152121	11321422	2220	11311135	22122421	2287	11611222	11151421	2354	13121314	21121432	
2154	11161213	23112421	2221	31311133	11222422	2288	16111312	11115241	2355	33121312	11112433	
2155	31161211	12212422	2222	51311131	22131511	89	25211311	11124331	2356	11312224	31112431	
2150	21143122	23121511	2223	23111224	11231512	2290	14311312	11133421	2357	22221313	3	
2157	21152212	12221512	2224	43111222	12113422	2291	23411311	11142511	2358	42221311	1	
2158	11134123	21321511	2225	12211225	12122512	2292	12511312	21111253	2359	11321314	21112522	
2159	31134121	13112512	2226	32211223	21222511	2293	21611311	41111251	2360	31321312	12	
2160	11143213	22212511	2227	52211221	12231451	2294	31121134	11111344	2361	23112313	12121162	
2161	31143211	11312512	2228	21311224	13122151	2295	51121132	31111342	2362	43112311	21221161	
2162	21125122	13221151	2229	41311222	13131241	2296	21112135	21111433	2363	12212314	22112161	
2163	21134212	11421151	2230	13111315	11322151	2297	41112133	41111431	2364	32212312	11212162	
2164	11116123	14112151	2231	33111313	11331241	2298	61112131	11111524	2365	21312313	22121251	
2165	31116121	14121241	2232	22211314	12213151	2299	21121225	31111522	2366	41312311	11221252	
2166	11125213	12312151	2233	42211312	12222241	2300	41121223	2111161	23	1412113	12112252	
2167	31125211	12321241	2234	11311315	12231331	301	61121221	41111611	2368	34121131	42	
2168	22161121	13212241	2235	31311313	13113241	2302	11112226	21211162	2369	23221132	41	
2169	12152122	13221331	2236	51311311	13122331	2303	31112224	22111252	2370	12321133	4	
2170	12161212	11412241	2237	23211133	11313241	2304	51112222	11211253	2371	32321131	11212342	
2171	22143121	11421331	2238	43211131	13131421	2305	11121316	31211251	372	21421132	22121431	
2172	11243122	14192331	2239	12311134	$1132233 i$	2306	31121314	12111343	373	24112132	11221432	
2173	22152211	14121421	2240	32311132	11331421	2307	51121312	32111341	2374	13212133	12112432	
2174	11252212	12312331	2241	21411133	12213331	2308	21112315	21211342	2375	24121222	12121522	
2175	12134122	12321421	2242	41411131	12222421	2309	41112313	22111432	2376	13221223	21221521	
2176	12143212	13212421	2243	24111223	12231511	2310	61112311	11211433	2377	33221221	22112521	
2177	21243211	13221511	2244	13211224	13113421	2311	12121135	31211431	2378	11412133	11212522	
2178	22125121	11412421	2245	33211222	13122511	2312	32121133	12111523	2379	22321222	22121611	
2179	11225122	11421511	2246	22311223	11313421	2313	52121131	32111521	2380	11421223	11221612	
2180	22134211	14112511	2247	42311221	11322511	2314	21221134	21211522	2381	31421221	13121161	
2181	11234212	12312519	2248	11411224	21141151	2315	41221132	22111612	2382	14112223	11321161	
2182	12116122	21131152	2249	31411222	11132152	2316	22112134	11211613	2383	34112221	12212161	
2183	12125212	11122153	2250	14111314	11141242	2317	42112132	31211611	2384	14121313	12221251	
2184	21225211	31122151	2251	34111312	21123151	2318	11212135	22211161	2385	34121311	13112251	
2185	13152121	11131243	2252	23211313	21132241	2319	22121224	11311162	2386	12312223	13121341	
2186	13161211	31131241	2253	43211311	21141331	2320	42121222	23111251	2387	23221312	11312251	
2187	12243121	21113152	2254	12311314	11114152	2321	11221225	12211252	2388	12321313	11321341	
2188	12252211	21122242	2255	32311312	11123242	2322	31221223	21311251	2389	32321311	12212341	
218	13134121	21131332	2256	21411313	11132332	2323	51221221	13111342	2390	21421312	12221431	
2190	13143211	11113243	2257	41411311	11141422	2324	12112225	22211341	2391	24112312	13112431	
2191	11334121	31113241	2258	24211132	21114241	2325	32112223	11311342	2392	13212313	13121521	
2192	11343219	11122333	2259	13311133	21123331	2326	52112221	23111431	2393	33212311	11312431	
2193	12225121	31122331	2260	33311131	21132421	2327	12121315	12211432	2394	22312312	11321521	
2194	12234211	11131423	2261	22411132	21141511	2328	32121313	21311431	2395	11412313	12212521	
2195	13196121	31131421	2262	11511133	11114332	2329	52121311	13111522	2396	31412319	12221611	
2196	13125211	21113332	2263	31511131	11123422	2330	21221314	22211521	2397	15121132	11131162	
2197	11316121	21122422	2264	25111222	11132512	2331	41221312	11311522	2398	24221131	21122161	
2198	11325211	21131512	2265	14211223	11241151	2332	22112314	23111611	2399	13321132	21131251	
2199	21111226	11113423	2266	34211221	12132151	2333	42112312	12211612	2400	22421131	1111316	
2200	41111224	31113421	2267	23311222	12141241	2334	11212315	21311611				
2201	61111222	11122513	2268	12411223	11223151	2335	31212313	12311161				
2202	31111315	31122511	2269	32411221	11232241	2336	51212311	13211251				

